Во-первых, какими бы вы ни выбрали величины а и ге, электромагнитное поле всегда обладает массой. Сам электрон тоже обладает массой, что подтверждено огромным количеством опытов. Какая же часть массы электрона принадлежит собственно электрону, а какая часть — окружающему его полю? Ответ на это г вопрос зависит от того, какой мы представляем себе величину ге. Если г* относительно велико, можно считать, что большая часть (но не вся) массы электрона принадлежит собственно электрону, а меньшая ее часть — полю. Полагая форму электрона шарообразной с радиусом, равным примерно 1,7-10-13 см, мы приходим к интересному выводу. Сам по себе электрон вообще не обладает массой, а вся его масса, кстати сказать, равная 9,1-Ю-28 г, полностью распределена в окружающем пространстве. Конечно, вам не терпится задать вопрос: что же такое тогда электрон? Не станем, однако, торопиться — самое интересное нас ждет впереди.
Предположим, что электрон — шар, а радиус этого шара меньше, чем 1,7-10~13 см. Тогда масса электрического поля оказывается больше массы электрона. Если радиус электрона равен нулю, то масса электрона оказывается равной бесконечности. Бессмыслица? Не торопитесь с выводами. В том-то и дело, что об этом можно было бы и не говорить, если бы не одно «чрезвычайно досадное» обстоятельство. Большинство имеющихся на сегодня теоретических положений и опытных данных свидетельствует как раз о том, что электрон не имеет размеров — его радиус равен нулю. Известный физик, лауреат Нобелевской премии Ричард Фейнман писал по этому поводу:
«Мы вынуждены прийти к заключению, что представление, будто энергия сосредоточена в поле, не согласуется с предположением о существовании точечных зарядов. Один путь преодоления этой трудности — это говорить, что элементарные заряды (такие, как электрон) на самом деле вовсе не точки, а небольшие зарядовые распределения. Но можно говорить и обратное: неправильность коренится в нашей теории электричества на очень малых расстояниях или в нашем представлении о сохранении энергии в каждом месте порознь. Но каждая такая точка зрения все равно встречается с затруднв ниями. И их никогда еще не удавалось преодолеть; существуют они и по сей день».
Такова первая, но далеко не последняя трудность на нашем пути. К этому добавим еще кое-что. Когда вы строили систему из одноименных зарядов, они, будучи предоставленными самим себе, тут же разлетались. А вот электрон не разлетается. Никому никогда не приходилось наблюдать половинку или четвертушку электрона. Спрашивается, что удерживает заряд электрона от распадения на части? Если «внутри» у электрона какой-то твердый шарик, то как увязать это с предположением о точечных размерах? Ведь тогда получится бесконечно большая плотность материи.
Ну а что говорят об этом эксперименты? Опыты по взаимодействию протонов с электронами показали, что при расстояниях между ними, больших Ю-13 см, эти частицы ведут себя как точечные электрические заряды и подчиняются закону Кулона. А при меньших расстояниях все обстоит не так. При расстоянии порядка 10~и см взаимодействие ослабевает в 10 раз. Значит, либо электрон, либо протон — не точка, а заряд, распределенный в конечном объеме. Ученые склонны полагать, что таким свойством обладает именно протон. Кстати, из этих же опытов можно сделать и другой вывод: электрон проникает внутрь протона. Ставились и такие опыты, когда протоны пронизывались другими частицами насквозь Вывод однозначный: никакого твердого, монолитного вещества в природе не существует.
Но все же, что такое электрон? Конечно, замавчиво предположить: то, что мы считаем электроном, только мысленная точка, центр масс. Сама масса электрона, она же энергия, распределена в электрическом поле, окружающем эту точку. Но такое предположение не вяжется с другими известными свойствами, например с наличием у электрона момента количества движения — спина. Обо всем этом мы еще поговорим, а пока дадим возможность читателю немножко пофантазировать.
Электрический ток
Наверное, не стоит излагать здесь содержание учебника физики, поэтому ограничимся короткой справкой. Электрическим током называется движение электрических зарядов. Соответственно силой тока называют количество зарядов, прошедших за единицу времени через поперечное сечение проводника. Ток 1 А — это такой ток, когда за 1 с через поперечное сечение проводника проходит 1 Кул.