В конце 60-х годов американская фирма «Юнион кар-байд» продемонстрировала четырехместный легковой электромобиль, оборудованный водородно-воздушным электрохимическим генератором мощностью 6 кВт. Запас водорода в баллонах обеспечивал пробег до 320 км при скорости около 60 км/ч. В 1973 году в нашей стране был создан электрокар с электрохимическим генератором, работающим на водороде и воздухе.

Хотя до сих пор промышленностью еще не выпускаются электрохимические генераторы, есть все основания полагать, что выпуск их и широкое использование в самых различных областях начнутся в обозримом будущем. Какие трудности стоят на этом пути? Их несколько, и среди них выделяются две главные. Первая состоит в том, что водород как топливо хотя и не дефицитен — его можно получать, например, из воды, но достаточно дорог. Можно добывать водород из обычного топлива, если измельченный уголь обрабатывать водяным паром. Происходит реакция С+Н20—*СО+Н2. Полученную смесь СО и Н2 еще раз обрабатывают водяным паром, после чего образуется двуокись углерода С02 и дополнительный водород. Но подобная добыча водорода сопряжена с затратами энергии, поэтому кпд электрохимических генераторов, работающих с такими видами топлива, как уголь и природный газ, оказывается не более 40%.

Но это еще полбеды. Хуже обстоит дело со второй трудностью. О ней мы должны были бы сказать в самом начале обсуждения принципа действия гальванических элементов. Не случилось этого потому, что, поскольку речь шла о батарейках для карманных фонариков и магнитофонов, нас мало интересовал, скажем, максимальный ток, который создает элемент, или все тот же кпд.

На что же следовало обратить внимание? Электродные реакции проходят с.определенной скоростью. Например, количество ионов цинка, переходящих в раствор в единицу времени из металла в электролит, определяется химической активностью выбранной пары цинк—электролит. Повысить это количество можно одним-единетвен-ным способом, увеличив поверхность соприкосновения цинка с электролитом. В частности, для этого использовались порошковые цинковые электроды. В случае топливных элементов все обстоит сложнее. Здесь в одном месте должны встретиться не две, а три фазы: твердый электрод, жидкий электролит и газ (водород или кислород). Скорость реакции существенным образом зависит от того, сколько газа растворено в электролите, а водород и кислород растворяются очень плохо.

Одно из решений этой проблемы состоит в том, чтобы использовать пористые электроды — у них большая поверхность. Электрод изготовляется из смеси двух веществ, одно из которых хорошо смачивается водой,— такие вещества называют гидрофильными. Поры в гидрофильном веществе заполняются электролитом. Другое вещество, наоборот, отталкивает воду — такие вещества называют гидрофобными. Поры в нем заполняются газом. Все это хорошо на бумаге, а в жизни встречаются все новые и новые трудности, из-за которых мы до сих пор не имеем дешевых и эффективных электрохимических генераторов, хотя, казалось бы, есть все основания для оптимизма.

Животное электричество

Заканчивая эту главу, мы познакомимся еще с одной идеей. Как и в топливном элементе, в живой клетке реакции, сопровождающиеся выделением энергии, происходят либо в жидкой фазе, либо на границе жидкой и твердой фаз. Поэтому участвовать в реакциях могут только газы, растворенные в жидкости. Кислород и водород растворяются плохо — это одна из важных трудностей при изготовлении топливных элементов. Эта проблема решается путем использования пористых электродов из гидрофильных и гидрофобных веществ.

Природа решила эту проблему иначе. В живой клетке кислород и водород присутствуют не в чистом виде. Молекулы кислорода и водорода присоединяются к молекулам специальных веществ-переносчиков. Переносчиком кислорода служит гемоглобин и сходные с ним вещества. Одна молекула гемоглобина может перенести до четырех молекул кислорода.

Переносчиками водорода служит целая группа химических соединений, среди которых наибольшее значение имеет никотинамидаденинуклеотид (НАД). НАД не только переносит водород, но и «выдирает» атомы водорода из окисляемых молекул пищи. За каждый заход молекула НАД забирает по два атома водорода, одновременно способствуя тому, чтобы один из них распался на две заряженные частицы: протон и электрон. Причем отрицательный электрон остается присоединенным к молекуле переносчика, а положительный протон (ион водорода) переходит в раствор.

В топливных элементах «выдирание» атомов водорода из молекул топлива осуществляется, например, при обработке угля водяным паром. Но для этого нужны высокие температуры. В клетках та же задача решается с помощью специальных химических веществ — ферментов.

Известно, что отдельные ферменты можно извлекать из клеток и использовать в технологических процессах. Это давно применяется в виноделии, хлебопечении, сыроварении. Но извлечь комплексно несколько десятков ферментов, чтобы перерабатывать, скажем, глюкозу в водород, связанный с переносчиком, пока еще практически невозможно.

Перейти на страницу:

Поиск

Похожие книги