Поглядев машинально на банку, Илюша заметил, что количество ртути в банке снова увеличилось, а сбоку прыгает одна капелька, никак не может попасть обратно в банку.

Вот как Радикс сначала поставил этот чертеж

А потом повернули обратно

- 367 -

- Возьмем, - сказал Радикс, - очень тонкую полоску, толщиной в долю микрона. Если взять еще тоньше, так, пожалуй, и не увидишь. Так ведь и делали математики в старое время, когда свойства бесконечно малых не были еще достаточно хорошо исследованы и обсуждены. В этом роде действовали, например, Архимед, Кеплер и Кавальери.

Это было начало возникновения анализа бесконечно малых, и при разрешении некоторых, сравнительно простых вопросов в руках крупных ученых этот несовершенный способ давал серьезные, а для тех времен даже и решающие результаты. Во всяком случае, без этих первых, робких и грубых попыток интегрировать и дифференцировать с помощью таких, как выражался Кавальерн,"неделимых" полосок вряд ли наука сумела бы создать то, чем стала математика в наше время. Итак, мы берем такую тончайшую полоску как раз против абсциссы с пометкой "один". Впрочем, сказать по совести, мне надоело возиться с перегородкой, и я привык, чтобы ось иксов шла горизонтально. Поэтому я попрошу ртуть теперь уж без подпорок занимать полагающееся ей пространство между двумя вертикальными ординатами гиперболы.

Оси послушно повернулись, а Радикс сердито глянул на банку со ртутью. Бедная капелька, которая никак не могла попасть обратно в банку, опрометью кинулась обратно к стеклянной гиперболе и немедленно растянулась против абсциссы "1" тоненькой-претоненькой блистающей серебряной ниточкой.

- Хороша "неделимая" полоска? - спросил Радикс.

- Да, - отвечал Илюша, - уж поистине "неделимая".

- Допустим! - усмехнулся Радикс. - Пусть на этот раз будет по-твоему. Это, конечно, не совсем по Кавальери... Ну, все равно, не будем уж на этот раз придираться!.. Но представь себе, что я хочу ее переместить к абсциссе с пометкой "три". Поскольку эта полоска имеет некоторую конечную толщину, хоть и очень небольшую, она, чтобы уместиться под гиперболой, должна стать короче, а самое главное - толще.

Так вот: во сколько раз она станет толще?

- Поскольку уравнение гиперболы дает для игрека величины, обратные иксу, то ясно, что для абсциссы "один" мы и ординату получаем "один", а для абсциссы "три" мы получаем "одну третью". Опираясь на уравнение гиперболы, я утверждаю, что наша полоска должна, если ее перенести от абсциссы "один" к абсциссе "три", стать толще в три раза, ибо одна треть в три раза меньше единицы. По-моему, иначе быть не может.

Немедленно тончайшая ртутная ниточка сложилась втрое и быстро двинулась направо.

Действительно, когда она добралась до абсциссы "три", она стала той длины, какой в этом месте была ордината гиперболы.

- 368 -

- Ясно, - сказал Илюша.

- А далее, - спросил Радикс, - если взять еще одну тончайшую полоску, которая будет стоять рядом с первой, то с ней что будет?

- Я не могу сообразить сразу, как это будет, - отвечал мальчик, - но мне кажется, что если бы мы взяли целый полк тончайших полосок и стали их так перемещать...

Площадь.

- А ведь когда я перемещал целый трапецоид, я именно это и делал! - заметил Радикс.

- Ах да! - спохватился Илюша. - Разумеется. Но я уж буду пока по-своему рассуждать Итак, ты перемещаешь, скажем, две полоски, они стоят рядом... а стало быть, если первая, сложившись втрое, попадет в абсциссу "три", то ведь и вторая полоска очутится на расстоянии втрое более дальнем, а следовательно, и ей придется сложиться опять-таки втрое. А если это так, то очевидно, что и любая (то есть третья, четвертая, пятая и так далее) полоска тоже должна будет потолстеть при таком перемещении ровно втрое. А тогда и все они вместе, то есть вся площадь трапецоида, тоже должны будут стать втрое толще. И теперь понятно, почему ртуть заняла площадь от "трех" до "шести" по абсциссе.

- Превосходно! - ответствовал Радикс- Ну, а скажи мне, что будет, если я возьму площадку от икса, равного единице, до икса, равного некоторому n, и перенесу ее опять направо, так, чтобы ее начало совпадало с иксом, равным какому-то m?

- 369 -

- Придется растянуть всю эту площадку в m раз. И она тогда займет расстояние по абсциссе от m до mn.

- Итак, - продолжал Радикс, - допустим теперь, что я возьму одну площадочку от "один" по абсциссе до "два".

И теперь я хочу к ней пристроить сбоку, справа, еще одну точно такую же, то есть удвоить мою площадку. Затем, когда я пристрою вторую, я захочу пристроить третью, снова той же самой величины, то есть утроить первоначальную площадку.

Затем пристрою четвертую, пятую и так далее. И все они должны быть равновеликими. Ну, что из этого получится?

Илюша задумался на минутку, а потом сказал так:

Перейти на страницу:

Похожие книги