На то есть несколько причин. Во-первых, эта технология позволяет наблюдать за происходящим на уровне нейронных цепочек, а также влиять на него, работая с очень ограниченным участком – менее одного кубического миллиметра мозговой ткани. При этом можно изучать или менять поведение нейронов одного определенного типа, игнорируя все прочие. Появилась возможность целенаправленно исследовать появление отдельных воспоминаний, а также некоторые другие функции мозга. В этом отношении оптогенетика ликвидирует провал между такими методиками, как функциональное магнитно-ядерное сканирование и мониторинг отдельно взятых нервных клеток. Во-вторых, она позволяет не только наблюдать, но и контролировать – то есть с ее помощью ученые замыкают петлю обратной связи. Это сложная технология комплексного характера, поэтому лучший способ познакомиться с нею – рассмотреть, как она действует.
Трансгенная мышь побежала по кругу
Летом 2007 года группа выпускников Стэнфордского университета поместила мышь с модифицированными генами в пластиковую емкость. Зверек с любопытством обнюхивал дно контейнера. Казалось, ему не было никакого дела до того, что к его черепу был подсоединен оптоволоконный кабель. И мышь как будто совершенно не обращала внимания на то, что левая часть двигательной зоны ее головного мозга была перепрограммирована таким образом, какого никогда не задумывала природа.
Один из студентов щелкнул выключателем, и по кабелю в мышиный мозг пошел интенсивный поток лучей сине-голубого цвета [112] , заполняя его почти сверхъестественным свечением. И зверек побежал, преодолевая круг за кругом против часовой стрелки с таким постоянством, точно решил любой ценой выиграть Олимпийские игры. Затем свет погас – и мышь остановилась. Фыркнула. Поднялась на задние лапки и посмотрела прямо на студентов, словно желая спросить: «Почему, черт возьми, я все это проделала?» [113] И почему эти студенты так вопят и хлопают друг друга, словно то, что они наблюдали, стало для них самым важным из всего когда-либо виденного?
Потому что это действительно было самым важным из всего, что они когда-либо видели. Они наблюдали собственными глазами, как направленный луч света с большой точностью управлял активностью головного мозга. И мышь при этом не утратила памяти, не получила апоплексический удар и не погибла. Она просто бегала по кругу. Но, что в данном случае принципиально, она описывала круги
И это – большой минус для исследователя, поскольку каждый квадратный миллиметр мозга содержит нервные клетки различных типов, специализирующиеся на выполнении разных задач [114] . Это означает, что химические вещества и электрический ток вызывают нежелательные каскадные реакции возбуждения нейронов. Побочные эффекты, иначе говоря. Все равно, что чинить автомобильный мотор, обрушивая на него охапку молотков.
Это очень плохо также и для пациентов. Кохлеарные импланты позволяют глухим слышать, передавая активирующие импульсы слуховым нервам. Однако звуки при этом остаются не вполне четкими, поскольку электрические сигналы выходят за пределы крохотной области, включающей те нейроны, которые только и должны приходить в возбужденное состояние. Глубоко проникающие стимуляторы, применяемые для лечения болезни Паркинсона, позволяют пациентам говорить и двигаться, однако у половины прооперированных возникают побочные эффекты [115] . В некоторых случаях они ухудшают состояние больных, вызывая дополнительные затруднения, связанные с речью или передвижением. Электрошок же эффективен при депрессии, но нередко оборачивается потерей памяти.
В 1979 году Френсис Крик (Francis Crick), один из первооткрывателей ДНК, горестно сетовал по поводу крайней ограниченности современной ему технологии. Контроль над нейронами одного типа, расположенными в строго определенном участке мозга, – вот что нам нужно, заявил он на страницах