Итак, теперь нужно было найти вторую составляющую – «выключатель» нейронного возбуждения. Бойден закончил свою диссертацию, получил еще год для дополнительной работы, а затем вернулся в Массачусетский технологический институт, чтобы в возрасте 27 лет возглавить собственную лабораторию. Он нашел бактериальный ген халорходопсин (halorhodopsin), полагая, что его свойства окажутся противоположны ченнелродопсину (channelrhodopsin). В 2006 году Бойден и его коллега Ксю Хан (Xue Han) встроили халорходопсин в нейроны, которые затем облучили желтым светом, – и возбуждение последних прекращалось. На следующем этапе работы ученые встроили в нервные клетки
Замечательно. Теперь в руках ученых находились и «включатель», и «выключатель» (ON / OFF switches). Они не только давали возможность контролировать активность нейронов, но и позволяли воздействовать на нервные клетки с исключительной точностью. Фактически, в то же самое время Фенг Занг открыл это явление в Стэнфорде: с помощью желтого света ему удавалось останавливать движение червей [123] . В других лабораториях экспериментаторы заставляли мух подниматься в воздух при облучении их сине-голубым светом. В телепередаче
К 2007 году в распоряжении Дейсерота и Бойдена оказалось все необходимое для проведения экспериментов с оптогенетикой над животными.
1. «Включатель» (ON switch) – ген ченнелродопсин (channelrhodopsin).
2. «Выключатель» (OFF switch) – ген халорходопсин (halorhodopsin).
3. «Прирученный вирус» (tamed virus) – покорное им орудие доставки генов внутрь клетки.
4. Методика, позволявшая вводить малые количества «прирученных вирусов» в строго определенный объем мозговой ткани.
5. «Промоутер», обеспечивающий избирательное действие по отношению к нервным клеткам. Если экспериментаторам нужно было, чтобы ченнелродопсин работал только в нейронах определенного типа и ни в каких иных, то решение данной задачи обеспечивало применение «промоутера» с определенными свойствами.
6. Технология введения оптоволоконного кабеля сквозь отверстие в черепе для направления пучка световых лучей к модифицированным тканям головного мозга.
В августе того же года Дейсерот и его рабочая группа создали свою мышь, бегавшую против часовой стрелки (counterclockwise mouse). Они ввели ченнелродопсин в переднюю правую область двигательной коры головного мозга мыши – то есть в тот участок, который контролирует левую ногу. Когда по кабелю пошел световой сигнал, зверек побежал по кругу налево [124] . Это стало принципиальным доказательством, которое и требовалось ученым. Дейсерот немедленно ориентировал свою лабораторию на исследования, касающиеся болезни Паркинсона. Нейробиолог собрал всю обзорно-аналитическую информацию о том, почему в некоторых случаях помогает электростимуляция. Предположений оказалось больше, чем фактов. Согласно одной из версий, электрический ток должен подавлять избыточную активность так называемых субталамических нервных ядер (subthalamic nucleus, STN). Согласно другой, он стимулирует вспомогательные клетки (support cells), расположенные вокруг субталамических нервных ядер, – благодаря чему усиливается выработка необходимого нейротрансмиттера. Однако ни одна из гипотез не могла быть проверена на деле. Не было никакой возможности гасить возбуждение именно субталамических ядер – точно так же, как и средств для избирательного стимулирования только вспомогательных клеток.
Благодаря оптогенетике теперь такая возможность появилась. В 2008 году Дейсерот и его студенты начали работать с мышами, половина мозга которых была поражена болезнью Паркинсона. Применяя инструменты оптогенетики, они блокировали возбуждение субталамических ядер у одной группы лабораторных мышей и одновременно стимулировали вспомогательные нервные клетки у другой. Если зверьки в одной из групп начнут двигаться нормально, как здоровые особи, сразу станет ясно, какая из двух гипотез верна.
Однако, к смущению и тревоге экспериментаторов,