Слои p-типа и n-типа образуют р-n-переход. Металлическая подложка и металлический контакт являются электрическими контактами. Они проектируются с большой площадью поверхности. Свет, попадая на поверхность солнечного элемента, передает большую часть своей энергии атомам полупроводникового материала. Световая энергия выбивает валентные электроны с их орбит, создавая свободные электроны.

Вблизи обедненного слоя электроны притягиваются материалом n-типа, создавая небольшое напряжение вдоль р-n-перехода. При увеличении интенсивности света это напряжение увеличивается. Однако не вся световая энергия, попадающая в солнечный элемент, создает свободные электроны. В действительности, при сравнении получаемой от него электрической мощности с мощностью падающей световой энергии легко увидеть, что солнечный элемент — это довольно неэффективное устройство с максимальным коэффициентом полезного действия порядка 15 %.

Солнечные элементы дают низкое выходное напряжение 0,45 вольта при токе 50 миллиампер. Их необходимо соединять в последовательно- параллельные цепи для того, чтобы получить желаемое выходное напряжение и ток.

Солнечные элементы применяются для измерения интенсивности света в фотографическом оборудовании, для декодирования звуковой дорожки в кинопроекторах и для зарядки батарей на космических спутниках.

Схематические обозначения солнечных элементов показаны на рис. 26-4. Положительный вывод обозначается знаком плюс (+).

Рис. 26-4.Схематические обозначения солнечного элемента.

Фотодиод также использует р-n-переход и его устройство подобно устройству солнечного элемента. Он используется так же, как и фотосопротивление в качестве резистора, сопротивление которого меняется при освещении. Фотодиоды — это полупроводниковые устройства, которые изготовляются главным образом из кремния. Это делается двумя способами. Первый способ — создание простого р-n-перехода (рис. 26-5).

Рис. 26-5. Фотодиод с р-n-переходом.

При другом способе между слоями p-типа и n-типа вставляется слой нелегированного полупроводника, образуя p-i-n фотодиод (рис. 26-6).

Принципы работы фотодиода с р-n-переходом такие же как у солнечного элемента, за исключением того, что он используется для управления током, а не для создания его.

К фотодиоду прикладывается обратное напряжение смещения, формирующее широкий обедненный электронами слой. Когда свет попадает в фотодиод, он попадает в обедненный слой и создает там свободные электроны. Электроны притягиваются к положительному выводу источника смещения. Через фотодиод в обратном направлении течет малый ток. При увеличении светового потока увеличивается число свободных электронов, что приводит к росту тока.

P-i-n фотодиод имеет слой нелегированного материала между областями р и n. Это эффективно расширяет обедненный слой. Более широкий обедненный слой позволяет p-i-n фотодиоду реагировать на свет с более низкими частотами. Свет с более низкими частотами имеет меньшую энергию и, следовательно, должен глубже проникать в обедненный слой перед созданием свободных электронов. Более широкий обедненный слой дает больше возможностей для создания свободных электронов, p-i-n фотодиоды являются более эффективными во всех отношениях.

Благодаря слою нелегированного материала, p-i-n фотодиоды имеют более низкую собственную емкость. Это обеспечивает быстрый отклик на изменения интенсивности света. Кроме того, изменение их обратного тока в зависимости от интенсивности является более линейным.

Преимущество фотодиода — его быстрый отклик на изменения интенсивности света, самый быстрый из всех фоточувствительных устройств. Недостаток — низкая выходная мощность по сравнению с другими фоточувствительными устройствами.

На рис. 26-7 изображен типичный корпус фотодиода. Стеклянное окошко позволяет свету попадать в фотодиод. Схематическое обозначение фотодиода показано на рис. 26-8. Типичная цепь изображена на рис. 26-9.

Рис. 26-7. Корпус фотодиода.

Рис. 26-8.Схематическое обозначение фотодиода.

Рис. 26-9.Делитель напряжения, использующий фотодиод.

Фототранзистор устроен подобно другим транзисторам с двумя р-n-переходами. Он похож на стандартный n-р-n транзистор. Используется так же, как и фотодиод, и имеет корпус как у фотодиода, за исключением того, что у него три вывода (эмиттер, база и коллектор). На рис. 26–10 показана его эквивалентная цепь.

Рис. 26–10.Эквивалентная схема фототранзистора.

Проводимость транзистора зависит от проводимости фотодиода. Вывод базы применяется редко. Когда он все же используется, на него подается напряжение, открывающее транзистор.

Перейти на страницу:

Поиск

Все книги серии Учебники и учебные пособия

Похожие книги