If physical memory is full when a page fault occurs, a replacement policy is used to determine which virtual page must be removed from memory to make room for the new page. Common replacement policies include least recently used (LRU) and first in, first out (FIFO). The LRU algorithm (also known as the clock algorithm, as implemented in most versions of UNIX) requires the virtual memory system to track when a page in memory is used. When a new page frame is required, the page that hasn’t been used for the greatest amount of time is removed from the working set. The FIFO algorithm is somewhat simpler; it removes the page that has been in physical memory for the greatest amount of time, regardless of how often it’s been used.

Replacement policies can be further characterized as either global or local. A global replacement policy allows a page fault to be satisfied by any page frame, whether or not that frame is owned by another process. For example, a global replacement policy using the FIFO algorithm would locate the page that has been in memory the longest and would free it to satisfy a page fault; a local replacement policy would limit its search for the oldest page to the set of pages already owned by the process that incurred the page fault. Global replacement policies make processes vulnerable to the behavior of other processes—an ill-behaved application can undermine the entire operating system by inducing excessive paging activity in all processes.

Windows implements a combination of local and global replacement policy. When a working set reaches its limit and/or needs to be trimmed because of demands for physical memory, the memory manager removes pages from working sets until it has determined there are enough free pages.

Working Set Management

Every process starts with a default working set minimum of 50 pages and a working set maximum of 345 pages. Although it has little effect, you can change the process working set limits with the Windows SetProcessWorkingSetSize function, though you must have the “increase scheduling priority” user right to do this. However, unless you have configured the process to use hard working set limits, these limits are ignored, in that the memory manager will permit a process to grow beyond its maximum if it is paging heavily and there is ample memory (and conversely, the memory manager will shrink a process below its working set minimum if it is not paging and there is a high demand for physical memory on the system). Hard working set limits can be set using the SetProcessWorkingSetSizeEx function along with the QUOTA_LIMITS_HARDWS_MIN_ENABLE flag, but it is almost always better to let the system manage your working set instead of setting your own hard working set minimums.

The maximum working set size can’t exceed the systemwide maximum calculated at system initialization time and stored in the kernel variable MiMaximumWorkingSet, which is a hard upper limit based on the working set maximums listed in Table 10-21.

Table 10-21. Upper Limit for Working Set Maximums

Windows Version

Working Set Maximum

x86

2,047.9 MB

x86 versions of Windows booted with increaseuserva

2,047.9 MB+ user virtual address increase (MB)

IA64

7,152 GB

x64

8,192 GB

When a page fault occurs, the process’s working set limits and the amount of free memory on the system are examined. If conditions permit, the memory manager allows a process to grow to its working set maximum (or beyond if the process does not have a hard working set limit and there are enough free pages available). However, if memory is tight, Windows replaces rather than adds pages in a working set when a fault occurs.

Although Windows attempts to keep memory available by writing modified pages to disk, when modified pages are being generated at a very high rate, more memory is required in order to meet memory demands. Therefore, when physical memory runs low, the working set manager, a routine that runs in the context of the balance set manager system thread (described in the next section), initiates automatic working set trimming to increase the amount of free memory available in the system. (With the Windows SetProcessWorkingSetSizeEx function mentioned earlier, you can also initiate working set trimming of your own process—for example, after process initialization.)

Перейти на страницу:

Похожие книги