Следует подчеркнуть, что величина емкости есть индивидуальная характеристика конденсатора — подобно тому, как номинальное сопротивление есть индивидуальная характеристика конкретного резистора, — и характеризует количество энергии, которое может быть в нем запасено. Емкость в одну фараду весьма велика — обычно на практике используют микрофарады и еще более мелкие единицы, скажем, емкость упомянутой лейденской банки составляла величину всего-навсего порядка 1 нФ.

Смысл понятия емкости раскрывается так: если напряжение от источника напряжения составляет 1 В, то емкость в одну нанофараду, как у лейденской банки, может запасти 10-9 кулон электричества. Если напряжение составит 105 вольт (типичная величина при заряде от электростатической машины, как в опытах Мушенбрука), то и запасенный на этой емкости заряд увеличится в той же степени — до 10-4 кулон. Любой конденсатор фиксированной емкости сохраняет это соотношение — заряд на нем в любой момент времени тем больше, чем больше напряжение, а сама величина заряда определяется номинальной емкостью.

Если замкнуть конденсатор на резистор, то в первый момент времени он будет работать, как источник напряжения с нулевым выходным сопротивлением и номинальным напряжением той величины, до которой конденсатор был заряжен, т. е. ток через резистор определяется по обычному закону Ома. Скажем, в случае гвардейцев Мушенбрука характерное сопротивление цепи из нескольких человек, взявшихся за руки, составляет порядка 104 Ом — т. е. ток при начальном напряжении на конденсаторе 105 В составит 10 А, что примерно в 10 000 раз превышает смертельное для человека значение тока! Выручило гвардейцев то, что такой импульс был крайне кратковременным — по мере разряда конденсатора, т. е. стекания заряда с пластин, напряжение быстро снижается: емкость-то остается неизменной, потому при снижении заряда, согласно формуле на рис. 5.5, падает и напряжение.

Интересно, что при фиксированном заряде (если цепь нагрузки конденсатора отсутствует) можно изменить напряжение на нем, меняя емкость. Например, при раздвижении пластин плоского конденсатора емкость его падает (т. к. расстояние d между пластинами увеличивается), потому для сохранения заряда напряжение должно увеличиться — что и происходит на деле, когда в эффектном школьном опыте между раздвигаемыми пластинами конденсатора проскакивает искра при превышении предельно допустимого напряжения пробоя для воздуха.

На рис. 5.6 изображено подключение конденсатора С к нагрузке R. Первоначально переключатель К ставится в нижнее по схеме положение, и конденсатор заряжается до напряжения батареи Б. При переводе переключателя в верхнее положение конденсатор начинает разряжаться через сопротивление R, и напряжение на нем снижается. Насколько быстро происходит падение напряжения при подключении нагрузки? Можно предположить, что чем больше емкость конденсатора и сопротивление резистора нагрузки, тем медленнее происходит падение напряжения. Правда ли это?

Рис. 5.6.Подключение конденсатора к нагрузке:

К — переключатель, Б — батарея, С — конденсатор; R — сопротивление нагрузки

Это легко попробовать оценить через размерности связанных между собой электрических величин: тока, емкости и напряжения. В самом деле, в определение тока входит и время (напомним, что ток есть заряд, протекающий за единицу времени), и это время должно быть тем самым временем, которое нас интересует. Если вспомнить, что размерность емкости есть кулоны на вольт, то искомое время можно попробовать описать формулой: t = CU/I, где С — емкость, а U и I — ток и напряжение соответственно (проверьте размерность!). Для случая рис. 5.6 эта формула справедлива на малых отрезках времени, пока ток не падает значительно из-за уменьшения напряжения на нагрузке. Отметим, что формула эта полностью справедлива и на больших отрезках времени, если ток разряда — или заряда — конденсатора стабилизировать, что означает подключение его к источнику втекающего (при разряде) или вытекающего (при заряде) тока.

При обычной фиксированной нагрузке с сопротивлением R так, конечно, не происходит — напряжение на конденсаторе падает по мере истощения заряда, значит, ток через нагрузку также пропорционально снижается — в полном соответствии с законом Ома (помните, мы говорили, что простой резистор есть плохой источник тока?). Опять приходится брать интегралы, потому мы приведем только конечный результат: формула для расчета процесса снижения напряжения на емкости при разряде ее через резистор и соответствующий график показаны на рис. 5.7, а. А на рис. 5.7, б показан аналогичный процесс, который происходит при заряде емкости через резистор.

Рис. 5.7.Процессы при разряде и заряде конденсатора:

С — емкость; R — сопротивление нагрузки; t — время; е — основание натуральных алгоритмов (2,718282)

Перейти на страницу:

Поиск

Похожие книги