Так как через эти схемы постоянная составляющая напряжения не проходит, то полученные импульсы привязаны к выходному потенциалу схемы — в зависимости от того, куда подключен резистор. На графиках на рис. 5.9 резистор подключен к «земле» (а) или к источнику питания (б), потому и для выходного напряжения базовым будет либо нулевой потенциал, либо потенциал источника (при этом амплитуда импульсов будет такой, как у входного напряжения). Но вы можете подключать резистор на выходе такой схемы к любому потенциалу — она все равно передаст только переменную составляющую (с чем мы еще столкнемся при конструировании звукового усилителя).

Этим широко пользуются при необходимости формирования двуполярного напряжения из имеющегося однополярного или для умножения напряжения: если выходное напряжение на рис. 5.9, б пропустить через выпрямитель и сглаживающий фильтр низкой частоты (см. далее, а также главу 9), то на выходе получится напряжение выше, чем напряжение питания, причем в отсутствие нагрузки оно будет в точности вдвое превышать исходное напряжение («удвоитель напряжения»).

Рис. 5.9.Дифференцирующие цепочки:

а — при подключении резистора к нулевому потенциалу; б — к потенциалу источника питания

Иногда эффект удвоения вреден — подачей отрицательного или превышающего потенциал источника питания напряжения можно вывести из строя компоненты схемы (о защите от этого см. главы 11 и 16).

А интегрирующая цепочка (фильтр нижних частот) получается из схем рис. 5.9, если в них R и С поменять местами. График выходного напряжения будет соответствовать рис. 5.10. Такие цепочки, наоборот, пропускают постоянную составляющую, в то время как высокие частоты станут отрезаться. Если в такой цепочке увеличивать постоянную времени RC, то график будет становиться все более плоским — в пределе пройдет только постоянная составляющая (которая для случая рис. 5.10 равна среднеамплитудному значению исходного напряжения, т. е. ровно половине его амплитуды). Этим широко пользуются при конструировании вторичных источников питания, в которых нужно отфильтровать переменную составляющую сетевого напряжения (см. главу 9). Интегрирующими свойствами обладает и обычный кабель из пары проводов, о котором мы упоминали ранее, потому-то и теряются высокие частоты при прохождении сигнала через него.

Рис. 5.10.Интегрирующая цепочка и ее график выходного напряжения в одном масштабе с входным

Индуктивности

Таким же свойством реактивного сопротивления в цепи переменного тока обладают индуктивности — хотя они по всему противоположны конденсаторам. Мы не будем здесь рассматривать индуктивности подробно по простой причине — в обычной схемотехнике (кроме радиочастотной, а в настоящее время уже и там) индуктивностей в основном стараются избегать, и используют лишь в трансформаторах и еще разве что в фильтрах для защиты от помех. Но вкратце все же рассмотрим их свойства.

Простейшая индуктивность — катушка из провода, а если ее намотать на основу из ферромагнитного материала, то ее индуктивные свойства значительно улучшатся.

Индуктивности очень сложно делать автоматизированным способом, кроме самых простых (не говоря уж об их включении в состав микросхем), и это одна из причин того, почему их стараются не использовать в массовой аппаратуре.

Измеряют индуктивность в генри (Гн), по имени выдающегося американского физика Джозефа Генри (1797–1878). Стандартные индуктивности со значениями порядка микро- и миллигенри выпускаются промышленно, внешне они похожи на резисторы и точно так же маркируются цветным кодом. Обычно они покрашены в светло-зелено-голубой цвет — чтобы отличить их от резисторов.

Если конденсатор для постоянного тока представляет собой разрыв цепи, то индуктивность, наоборот, — нулевое сопротивление. С ростом частоты переменного тока реактивное сопротивление индуктивности растет (у конденсатора, напомним, падает). Реактивное сопротивление индуктивности величиной L (Гн) можно вычислить по формуле: RL = 2πfL.

Мы уже знаем, что любой перепад напряжения есть импульс высокой частоты, и что попытка разорвать (или наоборот, соединить) цепь, содержащую индуктивность, приводит к неожиданным последствиям. Из курса физики известно, что после разрыва цепи за счет самоиндукции ток продолжает некоторое время течь в витках катушки, а так как сопротивление цепи становится бесконечно велико, и течь ему некуда, то на индуктивности возникает большой (тем больший, чем больше величина индуктивности и чем меньше ее активное сопротивление, т. е. чем она ближе к идеалу) выброс напряжения — в полном соответствии с законом Ома. Этот эффект, например, приводит к выбросам напряжения на фронтах прямоугольных импульсов в схемах с использованием быстродействующих компонентов. Мы еще вспомним об этом явлении, когда будем говорить о реле в главе 7.

Перейти на страницу:

Поиск

Похожие книги