В дальнейшем мы будем иметь дело в основном с цепями постоянного тока или низкой частоты. Слова «низкой частоты» в предыдущей фразе нужно понимать условно, и вот почему: любой перепад напряжения (например, при включении или выключении питания) есть импульс высокой частоты, и тем она выше, чем быстрее происходит сам процесс снижения или повышения напряжения. Любое колебание, согласно теореме Фурье, великого французского математика, работавшего еще в конце XVIII века, можно представить как сумму гармонических (т. е. синусоидальных) колебаний. Возможен и обратный процесс— воспроизведение изначальной формы колебания через известную сумму гармоник. Если импульс строго прямоугольный, то самая высокая частота в такой сумме должна быть равна бесконечности, чего на деле, конечно, не бывает, поэтому реальные импульсы всегда не строго прямоугольные. Прохождение прямоугольных импульсов через конденсаторы и резисторы мы разберем далее, а пока рассмотрим поведение конденсаторов в цепях с обычным синусоидальным переменным током.

Постоянный ток конденсатор не пропускает по определению, т. к. представляет собой разрыв в цепи. Однако переменный ток через него протекает, при этом происходит постоянный перезаряд конденсатора, поскольку напряжение все время изменяется по величине и полярности. Поэтому конденсатор в цепи переменного тока можно представить себе, как некий резистор: чем меньше емкость конденсатора и чем ниже частота, тем выше величина его сопротивления. Ее можно подсчитать по формуле R =1/2π∙fC (если емкость С выражена в фарадах, а частота f в герцах — сопротивление получится в омах). В пределе конденсатор очень малой емкости (что представляют собой, как мы уже выяснили, почти все пары проводников на свете) будет выглядеть, как полный разрыв в цепи и ток в этой цепи будет исчезающе мал.

Сам по себе конденсатор в такой цепи энергии не потребляет (в отличие от обычного резистора), поэтому его сопротивление переменному току называют реактивным — в то время как обычное резистивное сопротивление называют активным.

Замечание

Комплексную сумму активного и реактивного сопротивлений цепи иногда называют ее импедансом— это понятие эквивалентно обычному сопротивлению (и измеряется в омах), но используется при анализе высокочастотных схем.

Понять, почему так происходит, можно, если представить себе графики тока и напряжения в цепи с конденсатором — ток опережает напряжение по фазе ровно на 90°, поэтому их произведение, которое есть потребляемая мощность по закону Джоуля-Ленца, в среднем равно нулю — можете проверить! Однако если в цепи имеются еще и обычные резисторы (а, как мы знаем, они всегда присутствуют— взять хотя бы сопротивление проводов), то этот реактивный ток приведет ко вполне материальным потерям на их нагревание — именно поэтому линии электропередач выгоднее делать на постоянном токе.

Подробности

Кроме конденсаторов, реактивным сопротивлением обладают также индуктивности (в простейшем случае это катушка с проводом), только они по всему противоположны конденсаторам: ток в цепи, содержащей индуктивность, отстает от напряжения на 90°. Если конденсатор для постоянного тока представляет собой разрыв цепи, то индуктивность, наоборот— нулевое сопротивление, а с ростом частоты переменного тока реактивное сопротивление индуктивности растет. Индуктивности очень не «любят» в электронике, т. к. реальные изделия всегда далеки от идеальной индуктивности, имеют большие габариты и с трудом поддаются автоматизации производства. В микроэлектронике их стараются избегать, за исключением трансформаторов и фильтров в источниках питания (см. главу 4), где применяют готовые дроссели (внешне очень похожие на резисторы), или намотанные вручную на ферритовые кольца. Измеряется индуктивность в генри (Гн).

Перейти на страницу:

Поиск

Похожие книги