Предусмотрена возможность двух коррекций на среднем участке траектории: первая производится через 15 часов, вторая – через 70 часов после старта.

Через 89,5 часа после старта на расстоянии 900 километров от Луны включается бортовой ЖРД для перевода аппарата на начальную селеноцентрическую орбиту с высотой периселения 200 километров, высотой апоселения 1800 километров и периодом обращения 3,5 часа.

Первые сеансы фотографирования в целях проверки Фотоустановки производятся на начальной орбите. Через несколько суток после вывода аппарата на эту орбиту включается бортовой ЖРД аппарата для перевода его на орбиту с более низким периселением (40 – 50 километров). Апоселений орбиты при этом почти не изменится. После перевода на новую орбиту начинается фотографирование выбранных участков.

После передачи снимков аппарат используется для изучения метеорной и радиационной обстановки у Луны и ее гравитационного поля (по эволюции орбиты).

После того как запас сжатого азота в системе ориентации уменьшится до критического уровня, с Земли подается команда на включение бортового ЖРД для торможения аппарата с таким расчетом, чтобы он упал на Луну.

<p>ИССЛЕДОВАНИЕ ОКОЛОЛУННОГО ПРОСТРАНСТВА</p>

До запуска первой космической ракеты на межпланетные расстояния – автоматической станции «Луна-1» – существовали очень смутные представления о дальности заметного влияния Земли на физические свойства космического пространства.

Точно так же весьма приближенной была количественная оценка важнейших параметров космического пространства (магнитного поля, концентрации заряженных частиц и т. д.) и особенно динамических процессов в нем вдали от Земли, обусловленных главным образом деятельностью Солнца.

Первые же полеты космических аппаратов к орбите Луны показали, что околоземное заатмосферное пространство – весьма сильно отличающееся от межпланетного – простирается существенно дальше, чем это предполагалось ранее. Зона значительного влияния Земли на основные характеристики пространства имеет протяженность в сотни тысяч километров, более всего она вытянута в направлении от Солнца.

Рис. 26. Расположение радиационных поясов Земли:

1, 2, 3 – первый, второй и третий радиационные пояса; 4 – внешние области магнитосферы; 5 – геомагнитный экватор

Указанное влияние нашей планеты на окружающее космическое пространство определяется взаимодействием земного магнитного поля, потоком заряженных частиц от Солнца и межпланетным магнитным полем солнечного происхождения.

Это взаимодействие приводит, во-первых, к образованию радиационных поясов Земли, простирающихся на высоту примерно десяти земных радиусов (рис. 26), и, во-вторых, к своеобразному отличию околоземного космического пространства от межпланетного. По современным представлениям, область заметного влияния Земли на параметры космического пространства распространяется в направлении к Солнцу на 12 – 15 земных радиусов, в перпендикулярном направлении – на 20 – 25 земных радиусов и на расстояния, превышающие радиус лунной орбиты, в ночную сторону (от Солнца).

Первые принципиально новые результаты о наиболее важных параметрах космического околоземного, межпланетного и окололунного пространства были получены в 1959 году с помощью научных автоматических станций «Луна-1», «Луна-2» и «Луна-3». Позже для изучения Луны были запущены аппараты типов «Зонд», «Сервейер», «Лунар Орбитер» и другие, продолжались также запуски автоматических станций типа «Луна».

К настоящему времени уже несколько десятков космических аппаратов исследовали поверхность Луны и окружающее ее пространство. В частности, установлено, что у Луны практически отсутствует атмосфера: ее плотность уступает плотности земной атмосферы, по крайней мере, в тысячу миллиардов раз.

На автоматических станциях, запускавшихся в район Луны, были установлены: магнитометры для измерения магнитного поля; датчики для подсчета микрометеоритов, встречаемых при полете; ловушки заряженных частиц для регистрации частиц малых энергий; счетчики космических лучей, замеряющие потоки и энергии частиц высоких энергий, и другая научная аппаратура.

<p>О МАГНИТНОМ ПОЛЕ ЛУНЫ</p>

Измерение магнитных полей непосредственно в космическом пространстве несколько осложняется тем, что различные бортовые устройства автоматической станции (реле, токонесущие провода и пр.) имеют собственное магнитное поле. В связи с этим для уменьшения помех от самого космического аппарата магнитометры выносятся на специальных штангах на некоторое удаление от основной конструкции (около двух метров).

На автоматической станции «Луна-2», впервые достигшей поверхности Луны, был установлен трехкомпонентный магнитометр с диапазоном измерения по каждой (взаимно перпендикулярной) компоненте до 700 гамм и минимальной чувствительностью в условиях полета около 30 гамм (1 гамма = 10-5 эрстед).

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже