Не увели ли нас предположения и упрощения далеко в сторону от тех реальных условий, в которых колеблется реальный атом в узле реальной кристаллической решетки? Кажется, не увели. Пружинка удачно моделирует наличие силы притяжения (когда она растянута) и силы отталкивания (когда она сжата). Грузик хорошо моделирует атом, так как в нашей задаче, если силы заданы, от атома требуется лишь иметь определенную массу, а грузик ее имеет. А то, что в избранной модели колебания происходят вдоль прямой, существа дела практически не искажает, так как более сложное колебание можно представить в виде суммы прямолинейных, — этой возможностью мы уже пользовались, когда, объясняя открытие Дюлонга и Пти, предполагали, что каждый из атомов участвует в трех прямолинейных колебаниях.

Определим вначале амплитуду колебаний атома. Потенциальная энергия Wп колеблющегося грузика, очевидно, не должна зависеть от того, смещается он влево или вправо от своего среднего положения, когда пружина и не сжата, и не растянута. А это означает, что

где — постоянная величина, характеризующая упругие свойства пружины. Эта величина определяет силу, действующую на грузик со стороны пружины: F = — х.

При максимальном отклонении колеблющегося атома от положения равновесия, т. е. при отклонении на величину амплитуды колебаний А, как мы уже знаем, вся энергия атома будет запасена в виде потенциальной энергии. Это означает, что

A2/ 2 = kT

и, следовательно,

A = (2kT / )1/2

Полученная формула неприятна тем, что в нее входит неизвестная нам величина . Впрочем, ее нетрудно связать с известными характеристиками кристалла. Для этого левую и правую части формулы, которая определяет силу F, поделим на а2, где а — межатомное расстояние:

F/а2 = -.x/а

Легко усмотреть, что F/a2 — напряжение, действующее на атом,х/а — относительное смещение атома. Если оно невелико, последняя формула просто является записью закона Гука, а отношение /а имеет смысл модуля упругости Е. Итак, = Еа , а амплитуда

A = (2kT/Ea)1/2T1/2

Из нашего расчета следует, что амплитуда колебаний атома с температурой возрастает по закону T1/2. У металлов, для которых Е 1012 дин/см2, а 3• 10-8 см, в области предплавильных температур амплитуда А 2.10-9 см и, следовательно, составляет несколько процентов от величины межатомного расстояния. Много это или мало? Конечно же, немного, если иметь в виду сохранение решетки как таковой, если заботиться о том, чтобы тепловые колебания не расшатали кристалл, лишив его порядка в расположении атомов. При найденной нами амплитуде колебаний атомов кристалл сохраняет свою индивидуальность, еще не теряет «черты кристалла».

Определим теперь период колебаний атома. Если иметь в виду лишь приближенную оценку, то сделать это совсем несложно. Когда вся тепловая энергия колеблющегося атома преобразована в его кинетическую энергию, атом движется с максимальной скоростью, которая следует из условия

Мы сделали грубое предположение, сочтя, что на протяжении всего периода колебаний атом движется с максимальной скоростью. Как выясняется, оно привело нас к потере численного множителя 2. Точная формула выглядит так:

Мы получили результат, противоречащий интуиции: кажется странным, что период колебаний атома в решетке практически не зависит от температуры, разве что лишь в меру очень слабой температурной зависимости модуля упругости. Здесь следует подчеркнуть: не при всех температурах, а лишь при высоких температурах, когда вообще справедливо все то, что рассказано в очерке. Так как масса атома

m 10-22 грамм, то 0 = 10-13 - 10-12 с

Итак, мы оценили две фундаментальные характеристики движения атома в кристалле: амплитуду и период колебаний. Их значения свидетельствуют об очень активной жизнедеятельности атома: он за секунду, не меняя положения оседлости, совершает п = 1/0 = 1012 — 1013 колебаний, проходя при этом путь протяженностью L = па = (1012 — 1013)• 10-9 см = 103 — 104 см!

История закона Дюлонга и Пти — отличная иллюстрация к одной из общих закономерностей развития науки: в ее ткань входят не только завершенные «глыбы» правды, но и те «крупицы» знаний, которые оказываются лишь долей правды.

ТЕОРИИ ЭЙНШТЕЙНА И ДЕБАЯ 

Открытие Дюлонга и Пти оказалось первым этапом почти вековой истории выяснения природы теплоемкости кристалла. Два последующих этапа связаны с именами великих физиков XX века — Альберта Эйнштейна и Петера Дебая. Их достижения относятся к теории. Экспериментальным же изучением теплоемкости в XX веке занимались в великом множестве лабораторий.

Перейти на страницу:

Поиск

Похожие книги