Основой процесса отсчета времени являются по его представлению, очень длинные молекулы ДНК, которые он называет «хрононами». На разошедшихся нитях спирали ДНК строится информационная РНК, достигая полной длины одиночной нити ДНК. Одновременно протекает ряд взаимосвязанных химических реакций, соотношение скоростей которых можно рассматривать как работу регулирующего механизма часов. Таким образом, вся последовательность этих реакций служит в качестве точного механизма отсчета времени, который в очень большом диапазоне не зависит от температуры. Эрет рассматривает эту модель как «скелет… в котором опущены все подробности, не являющиеся абсолютно необходимыми».
Выдвинутая Эретом концепция уже теперь помогает глубже понять всю сложность проблемы живых часов.
18. Мыши-астронавты
Наша неосведомленность относительно организации живого, того, как оно функционирует, в целом настолько глубока, а отсутствие настоящей теории (в том смысле, в котором употребляет этот термин физик) настолько полно, что мы не можем позволить себе роскошь утверждать, что космическое окружение не принесет нам никаких сюрпризов. Короче, мы не можем позволить себе быть настолько самонадеянными, чтобы лишиться из-за этого возможности сделать открытие первостепенной важности.
Роберт Линдберг, руководитель лаборатории биоастронавтики (Готорон, Калифорния), считает, что для исследователей космоса чрезвычайно важно знать, как поведут себя живые часы, когда они выйдут за пределы сферы действия всех сил, окружающих Землю. От реакции биологических часов на столь резкое изменение внешних условий зависит здоровье космонавтов, все дальше уходящих в глубокий космос. А для выяснения этого необходимы эксперименты над самыми разными животными.
«Если циркадные ритмы человека каким-то образом связаны с сигналами, поступающими из земного окружения, — пишет Линдберг, — тогда вероятность успешно справиться с длительными космическими полетами заметно снижается. Поэтому изучение циркадных ритмов в условиях глубокого космоса является столь же первоочередной задачей, как и измерение интенсивности жесткого космического излучения».
Исключительно ценную информацию могут дать не только полеты в глубокий космос, например на Марс, но и полеты небольшой автоматической лаборатории с живыми объектами по земной орбите, по орбитам вокруг Луны и вокруг Солнца. Летательные аппараты на этих орбитах, по крайней мере теоретически, подвержены некоторому влиянию земных полей. Спутник с орбиты, удаленной от земной поверхности на триста или четыреста километров, будет периодически приближаться к Земле и удаляться от нее, испытывая при этом циклически меняющееся влияние близости Земли. Организмы, находящиеся на борту такого аппарата, с неизбежностью ощутят этот ритм, и их циркадные ритмы замаскируются. Оба эти эффекта станут ничтожно малыми при переходе на гелиоцентрическую орбиту.
Так ли уже фантастичен полет космического корабля по гелиоцентрической орбите? Вероятно, он станет реальностью гораздо раньше, чем мы предполагаем. Общеизвестно, что прогресс человечества развивается по экспоненте, иными словами, скорость его развития не постоянна, а увеличивается с течением времени. Например, в области биологических ритмов за последние двадцать лет было достигнуто больше успехов, чем за предыдущие двести. Поэтому нельзя считать преждевременным обдумывание и разработку экспериментов, которые ставят целью выяснить, как будут вести себя растения, животные и человек в условиях глубокого космоса.
Подобно многим «недремлющим», Р. Линдберг пришел к изучению биологических ритмов из совсем другой области биологии. После защиты докторской диссертации в Калифорнийском университете в 1952 году он занялся исследованиями в Комиссии по атомной энергии. Работая на испытательной станции в пустыне, он изучал действие радиоактивных осадков на местных животных: кенгуровую крысу, белоногую и карманчиковую мышей.