Мы не будем детально излагать все, что известно в настоящее время о механизме затягивания светом. Достаточно отметить лишь несколько положений, представляющих общий интерес.
Во-первых, световые циклы оказывают универсальное действие в затягивании циркадных ритмов. Для холоднокровных животных таким затягивающим действием могут обладать и температурные циклы, но они, по-видимому, менее действенны. Это подтвердила недавняя работа Циммермана, выполненная им на дрозофилах.
Во-вторых, наблюдения Халберга, Рихтера, а также результаты Питтендрая показали, что у млекопитающих такие затягивающие сигналы света преобразуются через органы зрения[23]. Ослепленные мыши, крысы и хомяки не воспринимали затягивающего действия световых циклов. Но весьма вероятно, что этот путь носит вторичный характер. Если гипоталамус (часть переднего мозга, контролирующая различные центры, которые в свою очередь регулируют деятельность внутренних органов, водный баланс в организме, температуру тела, сон и т. д.) действует как управляющий центр системы циркадных ритмов, то для связи его со световым циклом окружающей среды необходима промежуточная связь с каким-либо поверхностным фоторецептором. Следует, однако, отметить, что данные Ганонга о проникновении видимого света в мозговой ствол позвоночных заметно снижают силу этого аргумента. К тому же экспериментально показано, что циркадная система дрозофилы может воспринимать влияние затягивающего цикла и тогда, когда мушка находится в стадии личинки и не имеет организованного фоторецептора.
Несколько исследователей (среди них Лис и Уильяме) показали, что фотопериодическое воздействие света (которое, как мы видели, является функцией циркадного ритма) может осуществляться в результате непосредственного поглощения света тканью центральной нервной системы. Для одноклеточных организмов и зеленых растений вопрос об организованном «глазе» не возникает. И тем не менее все они также подвержены затягивающему действию светового цикла. По-видимому, какая-то молекула в клетке, не специализированная для восприятия света в общепринятом смысле, поглощает свет и осуществляет непосредственную связь с ведущим механизмом циркадного цикла.
Брюс и Питтендрай считают, что возобновление интереса к циркадным ритмам, наблюдавшееся с 1950 года, вызвано главным образом классическими экспериментами Крамера и Фриша, которые открыли, что птицы и пчелы, пользуясь солнцем как компасом, могут придерживаться заданного направления в любое время дня. Перемещение солнца по небу животные компенсируют с помощью внутренних часов. Гоффман и другие исследователи показали, что часы животных работают по местному времени, в полном соответствии со световым циклом окружающей среды. Кроме того, Гоффман обнаружил, что часы скворцов продолжают действовать и при постоянном слабом освещении. Свободнотекущий период их циркадного ритма составляет около 23,5 часа.
Бюннинг почти за пятнадцать лет до исследований Крамера и Фриша связал циркадные ритмы с совершенно иным явлением — с фотопериодизмом. В 1920 году Гарнер и Аллард показали, что переход растений от вегетативного роста к цветению зависит от количества светлых часов в каждом суточном цикле, то есть от фотопериода. В 1936 году Бюннинг пришел к выводу, что эндогенная «суточная» ритмичность растений связана с фотопериодом. По его мнению, то, что мы теперь называем циркадным ритмом растения, состоит из двух полуциклов — светового (названного им «фотофильным») и темнового (или «скотофильного»).