Математический мир видит в лице Кантора великого пролагателя новых путей. Труд его указал новые направления развития анализа, открыв совершенно нетрадиционные постановки вопросов; широкое признание этого влияния он и сам уже в значительной мере мог видеть. Но только в наше время, в особенности благодаря работам молодой топологической школы, все более отчетливо осознается и признается роль его идей в столь же революционном прогрессе геометрии, которая может благодаря им продвигаться вперед с безупречной строгостью. Тончайшие идеи теории точечных множеств доказали свою ценность даже в физических приложениях. Что касается абстрактной теории множеств, к которой следует причислить, наряду с общими теориями эквивалентности и подобия, мир трансфинитных порядковых чисел, а также философское истолкование теории множеств, то в нынешнее время здесь снова заметны беспокойство и неуверенность. Но и в этих вопросах в ходе развития рано или поздно исполнятся слова Гильберта о рае, созданном для нас Кантором, из которого никому не удастся нас изгнать. И если для этого может потребоваться ряд новых фундаментальных идей, направленных в чуждые нам теперь стороны, то в целом завоевание актуальной бесконечности для науки является уже историческим фактом, и на этой почве, основываясь на идеях Кантора, будет происходить дальнейшее развитие, как это предвидел Кантор в эпиграфе к своей завершающей работе: “Veniet tempus, quo usta, quae nunc latent, in lucem dies extrahst et longioris aevi di Cigentia” («Придет время, когда ныне скрытое извлечено будет на свет усердием будущего века».

Перейти на страницу:

Похожие книги