Пример того, как одни и те же математические понятия выражаются в различном числе измерений, можно найти, сравнивая традиционную геометрию с аналитической. В аналитической геометрии точка описывается в системе координат на плоскости — двумя числами (абсциссой и ординатой), а в пространстве — тремя числами (абсциссой, ординатой и аппликатой), — в результате чего точка может выступать и как двухмерная, и как трехмерная точка. Дополнив три координаты четвертой (временем), Герман Минковский сформулировал понятие Провой точки, выразив ее в четырех измерениях. При этом она не просто стала четырехмерной, но и обрела движение, превратившись в мировую линию. Открытие Минковского, сыгравшее значительную роль в развитии физики, вовсе не явилось открытием четырехмерной сущности материального мира, но выступило одним из возможных опытов построения четырехмерной геометрии и описания в понятиях такой геометрии пространственности реальных вещей.

Здравый смысл и космистско-целостное понимание бесконечности и неисчерпаемости Вселенной предполагают совершенно иной подход: не математическая модель предписывает, какой должна быть Вселенная, а сам объективный мир и законы его развития являются критерием правильности любых теоретических предположений, объяснений и выводов. В этом смысле и вопрос: «В каком пространстве мы живем — евклидовом или неевклидовом?» — вообще говоря, некорректен. Мы живем в мире космического всеединства (в том числе и пространственно-временного). А в каком соотношении выразить объективно-реальную протяженность материальных вещей и процессов и в какой степени сложности окажется переплетение таких отношений (то есть в понятии пространства какого типа и скольких измерений отобразятся, в конечном счете, конкретные отношения), — во-первых, диктуется потребностями практики, а во-вторых, не является запретительным для целостной и неисчерпаемой Вселенной.

Так, в интерпретациях же различных космологических моделей, построенных на фундаменте разных геометрий, достаточно типичным является неправомерное овеществление (субстанциализация) пространственно-временных отношений. Между тем искать субстратно-атрибутивный аналог для евклидовости или неевклидовости и экстраполировать его на Вселенную — примерно то же самое, что искать отношения родства на лицах людей, отношения собственности — на товарах или недвижимости, а денежные отношения — на монетах или бумажных купюрах. Поэтому пространство, в котором мы живем, является и евклидовым, и неевклидовым, ибо может быть с одинаковым успехом и равноправием описано на языках геометрий и Евклида, и Лобачевского, и Гаусса, и Римана, и в понятиях любой другой геометрии, — уже известной или же которую еще предстоит разработать науке грядущего. Ни двух- ни трех- ни четырехмерность, ни какая-либо другая многомерность не тождественны реальной пространственной протяженности, а отображают лишь строго определенные аспекты объективных отношений, в которых она может находиться.

И все же Евклид бессмертен. Над входом в античную академию была выбита надпись: «Не знающий геометрии — не входи!» Евклида тогда еще и на свете не было. Но с появлением его великой книги можно уже было с полным основанием сказать: «Не читавшему Евклидовых «Начал» в науке делать нечего!»

<p>15. ПЛИНИЙ</p><p>«ЕСТЕСТВЕННАЯ ИСТОРИЯ»</p>

Грандиозный, энциклопедический по сути своей, труд древнеримского ученого Кая Плиния Секунда Старшего (23–79 го4 до н. э.) является вершиной античной культуры. Плиний поставил себе вполне осознанно почти фантастическую задачу: изучить все книги мира, отобрать из них наиболее информативные, сжать до предела имеющиеся в них сведения, и систематически все это компактно изложить для обучения грядущих поколений, чтобы они не теряли времени на повторы и «вторичные» книги. Еще более фантастично то, что замысел удалось осуществить.

Из необозримого океана античных текстов он отобрал примерно две тысячи «томов» (в начале собственного обобщающего труда он приводит список этих книг с указанием авторов и выражением чувства признательности своим предшественникам и «информаторам») Сам Плиний говорит о 100 авторах и 20 тысячах научных фактов, включенных в книгу. Современные исследователи выделяют примерно 35 тысяч «фактов», более 160 римских и 350 греческих и других иноземных авторов — от Гомера до современников Плиния. Современный исследователь творчества Плиния Старшего Г А Таросян настойчиво предлагает в качестве более адекватного перевода названия главного труда Плиния — «Естествознание» (1997 год). По существу и по содержанию такое заглавие более релевантно, но ведь есть и многовековая традиция латинского наименования — «Historia naturalis», ее, наверное, невозможно сломать. Итак — «Естественная история».

Перейти на страницу:

Все книги серии 100 великих

Похожие книги