В подпакете utils можно было бы разместить все классы и функции в одном большом модуле util.py, однако можно подключить пространства имен для того, чтобы разбить код на отдельные файлы, — и команда разработчиков ею воспользовалась. Отличный выбор!

Все реализации обработчиков содержатся в каталоге diamond/handler (это логично), но структура для сборщиков отличается. Для них не предусмотрен каталог — только модуль diamond/collector.py, в котором определяются базовые классы Collector и ProcessCollector. Все реализации подклассов класса Collector определены в каталоге Diamond/src/collectors/, в виртуальной среде они будут установлены по адресу venv/share/diamond/collectors, если вы устанавливали Diamond с помощью PyPI (рекомендованный способ), а не с помощью GitHub (как это сделали мы). Это помогает пользователю создать новые реализации сборщиков: размещение всех сборщиков в одном месте упрощает их поиск для приложения, а также создание аналогичных сборщиков. Наконец, каждая реализация сборщика в Diamond/src/collectors находится в своем каталоге (а не в отдельном файле), что позволяет разделить тесты для каждой реализации класса Collector. Также отлично придумано!

Расширяемые пользователем классы (сложное лучше, чем запутанное)

Добавить новую реализацию класса Collector нетрудно: нужно создать подкласс абстрактного базового класса diamond.collector.Collector[58], реализовать метод Collector.collect() и поместить реализацию в отдельный каталог по адресу venv/src/collectors/.

Сама по себе реализация сложна, но пользователь этого не знает. В данном разделе рассматриваются простая часть API сборщиков, которая видна пользователю, и сложный код, благодаря которому появился подобный интерфейс.

Сложное против запутанного. Мы можем сравнить работу со сложным кодом со швейцарскими часами — они просто работают, но внутри находится множество маленьких деталей, взаимодействующих с высокой точностью, чтобы упростить работу с API. Использование запутанного кода похоже на управление самолетом — вы наверняка должны знать, что делать, чтобы не разбиться и не сгореть[59]. Мы не хотим жить в мире без самолетов, но при этом желаем пользоваться часами, не вникая в тонкости их работы. Везде, где это возможно, создавайте менее сложные пользовательские интерфейсы.

Простой пользовательский интерфейс. Для того чтобы создать собственный сборщик данных, пользователь должен создать подкласс абстрактного класса Collector, а затем предоставить путь к нему с помощью конфигурационного файла. Рассмотрим пример нового определения класса Collector из класса Diamond/src/collectors/cpu/cpu.py. Когда Python ищет метод collect(), он сначала проверит на наличие CPUCollector, а затем, если оно не будет найдено, использует метод diamond.collector.Collector.collect(), что сгенерирует исключение NotImplementedError.

Код сборщика может выглядеть так:

# coding=utf-8

import diamond.collector

import psutil

class CPUCollector(diamond.collector.Collector):

····def collect(self):

········# В классе Collector содержится лишь инструкция raise(NotImplementedError)

········metric_name = "cpu.percent"

········metric_value = psutil.cpu_percent()

········self.publish(metric_name, metric_value)

Стандартное место для размещения определений сборщиков — каталог venv/share/diamond/collectors/, но вы можете хранить их по тому адресу, который укажете в свойстве collectors_path конфигурационного файла. Имя класса CPUCollector уже указано в примере конфигурационного файла. За исключением добавления спецификаций hostname или hostname_method в общие стандартные свойства (расположенные под конфигурационным файлом) или в отдельные переопределенные значения для сборщика, как показано в следующем примере, не нужно вносить другие изменения (в документации перечислены дополнительные настройки сборщиков (http://bit.ly/optional-collector-settings)):

[[CPUCollector]]

enabled = True

hostname_method = smart

Более сложен внутренний код. За кулисами сервер вызовет метод utils.load_collectors(), используя путь, указанный в collectors_path. Рассмотрим большую часть этой функции (мы сократили ее для удобства).

Разбиваем строку (первый вызов функции); в противном случае пути являются списками строк, содержащих пути, которые указывают места, где реализованы пользовательские подклассы класса Collector.

Здесь мы рекурсивно проходим по заданным путям, добавляя каждую папку в sys.path, чтобы далее можно было импортировать подклассы класса Collector.

Здесь выполняется рекурсия — метод load_collectors() вызывает сам себя[60].

Перейти на страницу:

Все книги серии Бестселлеры O'Reilly

Похожие книги