В нервных клетках декарбоксилирование глутамата приводит к образованию g-аминомасляной кислоты (ГАМК), которая служит основным тормозным медиатором высших отделов мозга. Содержание ГАМК в головном мозге в десятки раз выше других нейромедиаторов. Она увеличивает проницаемость постсинаптических мембран для ионов К+, что вызывает торможение нервного импульса.
Цикл превращений ГАМК в мозге включает три сопряженных реакции, получивших название ГАМК-шунта. Первую катализирует глутаматкарбоксилаза. Эта реакция является регуляторной и обеспечивает скорость образования ГАМК в клетках мозга. Последующие 2 две реакции можно считать реакциями катаболизма ГАМК. ГАМК-аминотрансфераза образует янтарный полуальдегид, который затем подвергается дегидрированию и превращается в янтарную кислоту. Сукцинат затем используется в цикле Кребса. Инактивация ГАМК возможна и окислительным путем под действием моноамионоксидазы.
При декарбоксилировании орнитина образуется путресцин, который является предшественником биологически активных веществ спермина и спермидина. Путресцин, спермин и спермидин имеют большой положительный заряд, легко связываются с отрицательно заряженными молекулами ДНК и РНК, входят в состав хроматина и участвуют в репликации РНК. Кроме того эти вещества стабилизируют структуру мембран клеток.
Этаноламин образуется при декарбоксилировании серина. В организме используется для синтеза холина, ацетилхолина, фосфатидилэтаноламинов, фосфатидилхолинов.
При декарбоксилировании лизина образуется кадаверин, который является трупным ядом.
Для осуществления биологической функции в организме требуется определенная концентрация биогенных аминов. Избыточное их накопление может вызвать различные патологические отклонения.
В связи с этим большое значение приобретают механизмы их инактивации:
1. окисление ферментами моноаминооксидазами (МАО) (кофермент ФАД). Таким путем чаще всего инактивируются дофамин, норадреналин, серотонин и ГАМК. При этом происходит окислительное дезаминирование биогенных аминов с образованием альдегидов, а затем соответствующих кислот, которые выводятся почками.
2. метилирование с участием S-аденозилметионина. Таким путем чаще всего инактивируются катехоламины – фермент катехол-орто-метилтрансфераза (КОМТ)
3. окисление с помощью диаминооксидаз – инактивация гистамина, а также короткоцепочечных алифатических диаминов (путресцина и кадаверина).
Пути катаболизма углеродного скелета аминокислот
Трансаминирование и дезаминирование аминокислот ведет к образованию безазотистых углеродных скелетов аминокислот – α-кетокислот. В состав белков входят 20 аминокислот, различающихся по строению углеводородного радикала, каждый из которых катаболизируется по своим специфическим метаболическим путям.
Катаболизм всех аминокислот сводится к образованию шести веществ, вступающих в общий путь катаболизма: пируват, ацетил-КоА, α-кетоглутарат, сукцинил-КоА, фумарат, оксалоацетат.
Аминокислоты, которые превращаются в промежуточные продукты ЦТК (a-кетоглутарат, сукцинил-КоА, фумарат), и образуют в конечном итоге оксалоацетат, могут использоваться в процессе глюконеогенеза. Такие аминокислоты называются гликогенными. К ним относятся: аланин, аргинин, аспартат, глутамат, глицин, гистидин, метионин, пролин, серин, треонин, валин, цистеин.
Катаболизм лейцина и лизина не включает стадии образования пировиноградной кислоты, их углеводородная часть превращается непосредственно в ацетоацетат (лейцин, лизин) или в ацетил-КоА (лейцин) и используются в синтезе кетоновых тел.
Тирозин, фенилаланин, изолейцин и триптофан являются смешанными или одновременно гликогенными и кетогенными. Часть углеродных атомов их молекул при катаболизме образует пируват, другая часть включается в ацетил-КоА, минуя стадию пирувата.
Истинной кетогенной аминокислотой является лейцин.
Глава 24. Образование и обезвреживание NH3 в организме
В состоянии азотистого равновесия организм взрослого человека потребляет и выделяет около 15 г азота за сутки. Из экскретируемого с мочой азота на долю мочевины приходится 85%, креатинина – 5%, аммонийных солей – 3%, мочевой кислоты – 10%, другие формы – 3–6%. В образовании мочевины и аммонийных солей главную роль играет аммиак.
Основные источники NH3:
1. трансдезаминирование аминокислот;
2. дезаминирование биогенных аминов;
3. распад пуриновых и пиримидиновых азотистых оснований;
4. окислительное дезаминирование аминокислот (преимущественно глутамата);
5. дезамидирование глутамина и аспарагина;
6. поступление аммиака из кишечника в портальнюю вену (образуется при гниении белков в кишечнике).