Ген средней величины объединят около 6 нуклеосом. Методами секвенирования было установлено, что организм человека содержит 25—40 тысяч активно работающих генов. В последнее время специалисты по биоинформатике уточняют количество генов до 2025 тысяч из-за их повторения в геноме. Следует учитывать высокую динамичность всей генной системы, и эти цифры, очевидно, будут меняться. Суть вопроса не в количестве генов, а в их сложности. Смысл эволюционных перестроек всей генной системы – это количество информации, включаемой в отдельный конкретный ген. Все гены функционируют как единое целое, формируя индивидуальный генотип особи и генотипическую среду, определяющую фенотипические проявления, т.е. признаки организма.

Генная регуляция синтеза белка. Система оперон

Основным условием существования любых живых организмов является наличие тонкой, гибкой и согласованно действующей системы регуляции, в которой все элементы тесно связаны друг с другом. В белковом синтезе определенное значение имеют не только количественный и качественный состав белков, но и параметры времени. Теорию генной регуляции синтеза белка разработали французские ученые Ф. Жакоб и Ж. Моно, удостоенные нобелевской премии (1965 г.). Для этого была использована культура бактерии кишечной палочки E. coli. Общая концепция состоит в способности этой бактерии включать или выключать систему генов в зависимости от наличия или отсутствия необходимой для жизнедеятельности бактерии лактозы (молочный сахар). Соответственно, система получила обозначение Lac-оперон (оперон – генетическая единица транскрипции). Она включает группу структурных и регуляторных генов.

Акцепторной зоной являются ген-промотор и ген-оператор. Структурные гены lac Z+, lac Y+, lac A+ содержат информацию о белках-ферментах, необходимых для расщепления лактозы: галактозидаза, пермеаза, трансацетилаза. Ген-регулятор регулирует образование регуляторного белка, контролирующего работу структурных генов. Ген-терминатор несет сигнал об окончании транскрипции (рис. 22).

Все указанные гены располагаются последовательно, за исключением гена-регулятора, которые занимают обособленное положение. Система работает рационально. В нерабочем состоянии ген-регулятор, контролирует выработку белка-репрессора (вещество-посредник), который находится в активной форме. Он включается в систему входа гена-промотора и далее связывается с геном-оператором, блокируя структурные гены. Механизм транскрипции закрыт. При поступлении в среду обитания Е. coli лактозы белок-репрессор переходит в неактивную форму, ген-оператор освобождается и структурные гены начинают механизм транскрипции. Происходит синтез ферментов расщепляющих лактозу как субстрат, необходимый для жизнедеятельности кишечной палочки. С полной утилизацией лактозы посредством активации белка-репрессора система посредством оператора опять блокируется. Таким образом, белок-репрессор является негативным регулятором.

Описанная для прокариот функциональная схема справедлива и для эукариотических клеток, хотя реализуется более сложными путями с участием гормонов. Кроме того, из-за наличия ядра в клетке процессы транскрипции и трансляции разделены не только пространственно биомембраной, но и во времени.

Рис. 22. Схема работы Lac-оперона. ГР – ген-регулятор; П – промотор; ГО – ген-оператор.

<p>Хромосомы</p>

Местом локализации генов в клетке являются хромосомы. Они относятся к числу самых удивительных внутриклеточных структур и с завидным упорством мигрируют из организма в организм на протяжении многих поколений. В миниатюрном биологическом компьютере, каким являются хромосомы, сконцентрирована информация в несколько терабайт, эквивалентная сотням томов обширных научных фолиантов. Здесь записано все – какими мы были, есть и будем.

Хромосомы – это высокоспециализированные компоненты клеточного ядра, обладающие особой индивидуальностью и функцией, способные к воспроизведению на протяжении ряда поколений. Свою четко выраженную морфологическую структуру хромосомы приобретают в ходе клеточного деления (митоза). Поэтому, все представленные ниже данные касаются митотических хромосом.

В состав хромосом входят ДНК, и-РНК, основные белки гистоны, негистоновые белки, Гистоны – это структурные белки относительно небольшого диаметра, несущие положительно заряженные аминокислоты. Положительный заряд способствует тесной связи гистонов с ДНК. Как указано выше, известно четыре типа гистонов, которые подразделяются на две группы: нуклеосомные гистоны Н2, Н3, Н4, и гистоны Н1 (см. рис. 21).

Строение хромосомы. В метафазе митоза хромосомы представлены палочковидными образованиями, сформированными подобно шпильке. В них различают плечи и центромеру, район первичной перетяжки. Расположение центромеры строго постоянно для определенной хромосомы.

Перейти на страницу:

Похожие книги