Принимая во внимание ограниченный размер электронного луча (который также определяет минимальные воспроизводимые элементы изображения), физический размер ТВ-экранов, расстояние от зрителя до экрана, сложность и издержки производства телесистем, можно заключить, что для качественного воспроизведения телесигнала достаточно ширины полосы пропускания в 5 МГц. Можно использовать более широкую полосу, но тогда будет очень низким коэффициент достижения качества в сравнении с затратами. Фактически, в телевещательных студиях камеры, записывающее оборудование и мониторы имеют намного более высокие стандарты, со спектрами до 10 МГц. Но они предназначены исключительно для внутреннего пользования, для качественной записи и дублирования (перезаписи). Прежде чем такой сигнал будет модулирован и передан на радиочастоте, он сокращается до 5 МГц, к которым прибавляется около 0.5 МГц для левого и правого каналов звукового сопровождения. На телепередатчике такой сигнал модулируется так, чтобы передавалась только его боковая подавленная полоса частот вместе с полной полосой частот, включая буферную зону разделения, что в сумме равняется 7 МГц (для PAL). Но обратите внимание, что фактически используемая полоса видеосигнала в телевещании равна всего 5 МГц. Для читателей, которым это интересно, заметим, что в большинстве стран, использующих стандарт PAL, видеосигнал модулируется методами амплитудной модуляции (AM), в то время как звук — частотной модуляцией (ЧМ).

Аналогичные соображения учитываются при рассмотрении сигналов NTSC, где полоса частот в телевещании равна примерно 4.2 МГц.

В большинстве систем видеонаблюдения мы не сталкиваемся с подобными ограничениями в отношении полосы частот, поскольку мы не передаем радиочастотно-модулированный видеосигнал. Нам не надо волноваться по поводу помех соседних видеоканалов. В видеонаблюдении мы используем необработанный видеосигнал в том виде, в каком он выходит из камеры, это базовый видеосигнал. Обычно его сокращенно обозначают CVBS (composite video bar signal — полный видеосигнал). Спектр такого сигнала, как уже упоминалось, колеблется в пределах от 0 до 10 МГц — в зависимости от качества источника.

Спектральная емкость коаксиального кабеля как канала передачи гораздо шире. Самый распространенный коаксиальный кабель 75 Ом RG-59B/U, например, может легко передать сигналы с шириной полосы частот до 100 МГц. Конечно, он используется для передачи информации на небольшие расстояния — до двухсот метров, но для большинства систем видеонаблюдения этого достаточно. Различные средства передачи имеют различные ограничения полосы частот. Одни имеют большую, чем коаксиальные кабели, ширину полосы пропускания, другие — меньшую, но у большинства полоса все же значительно шире 10 МГц.

Цветной видеосигнал

Когда появилось цветное телевидение, в его основе лежали определения и ограничения монохромного сигнала. Сохранение совместимости между черно-белым и цветным ТВ имело принципиальную важность. Единственный способ, каким цветовая информация (хроматическая) может быть передана вместе с яркостью без увеличения полосы пропускания частот видеосигнала, состоял в том, чтобы модулировать цветовую информацию частотой, которая бы попадала точно между компонентами спектра яркости. Это означает, что спектр сигнала цветности перемежается со спектром сигнала яркости таким образом, что они не мешают друг другу. Эта частота называется хроматической поднесущей. Было обнаружено, что наиболее подходящей для PAL является частота 4.43361875 МГц. В NTSC используется тот же принцип: в данном случае необходима цветовая поднесущая 3.579545 МГц.

Здесь необходимо уточнить и подчеркнуть, что NTSC характеризуется именно 29.97 кадрами, а не 30(!). Это объясняется определением цветового сигнала в NTSC, который, как гласит видеостандарт RS170A, базируется в точности на частоте цветовой поднесущей в 3.579545 МГц. Частота строчной развертки определяется умножением 2/455 на частоту цветовой поднесущей, что равняется 15734 Гц. Из нее выводится частота кадровой развертки; NTSC рекомендует высчитывать ее умножением 2/525 на частоту строчной развертки. В результате получается 59.94 Гц для частоты кадров, или скорости полей. Однако для простоты и удобства в этой книге мы будем говорить, что в NTSC сигналу соответствует 60 полей.

Как мы уже упоминали в разделе «Цветное телевидение», основы воспроизведения цвета лежат в аддитивном смешении трех основных цветовых сигналов: красного, зеленого и синего. Так, для передачи полного цветового сигнала, теоретически, кроме информации яркости, требуются еще три разных сигнала. На заре цветного ТВ это казалось невозможным, особенно, когда для сохранения совместимости с монохромными стандартами использовалась область между 4 и 5 МГц.

Для этого требовалась сложная, но умная процедура. В рамках нашей книги объяснить такую процедуру не представляется возможным, но чтобы читатели лучше понимали все сложности воспроизведения цвета в ТВ, приведем следующие факты.

Перейти на страницу:

Поиск

Похожие книги