В видеонаблюдении, подобно вещательному ТВ, мы не можем изменять вертикальное разрешение, так как мы ограничены числом, определенным системой развертки. Именно поэтому мы редко рассматриваем проблему вертикального разрешения. Общепринятым вертикальным разрешением является примерно 400 ТВ-линий для CCIR и 330 ТВ-линий для EIA. Горизонтальное разрешение мы можем менять, и оно зависит от горизонтального разрешения камеры, качества средств передачи информации и монитора. В видедонаблюдении часто используются камеры с 570 ТВ-линиями горизонтального разрешения, которое соответствует максимуму приблизительно в 570x4/3 = 760 линий по ширине экрана. Камера такого типа считается камерой с высоким разрешением. В ч/б камере со стандартным разрешением горизонтальное разрешение будет составлять 400 ТВ-линий.

Между шириной полосы видеосигнала и соответствующим числом линий существует простое соотношение. Если взять одну строку видеосигнала, активная продолжительность которого равна 57 микросекунд, и распределить его на 80 ТВ-линий, мы получим 80x4/3 = 107 линий. Эти линии, представленные в виде электрического сигнала, напоминают синусоидальные колебания. Так, пара черно-белых строк фактически соответствует одному периоду синусоидальной волны. Поэтому, 107 линий — это приблизительно 54 синусоиды. Период синусоидального колебания равнялся бы 57 мкс/54 = 1.04 мкс. Если применить известное соотношение для времени и частоты, то есть T = 1/f, то мы получим f = 1 МГц. Следующее важное, но очень простое эмпирическое правило, дает нам соотношение между полосой частот сигнала и его разрешением: приблизительно 80 ТВ-линий соответствуют 1 МГц полосе частот.

Инструменты, используемые в телевидении

Обычным электронным мультиметром очень трудно определить свойства видеосигнала. Однако в нашем распоряжении имеются специальные инструменты, которые при правильном использовании позволяют точно описать измеряемый видеосигнал. Это осциллографы, анализаторы спектра и вектороскопы. В большинстве случаев достаточно осциллографа, и я настоятельно рекомендую серьезным специалистам иметь его в своем арсенале.

Осциллограф

Изменение сигнала (по времени) может происходить медленно или быстро. Что считать «медленным» и «быстрым», зависит от многих связанных друг с другом условий. Одно периодическое изменение какого-либо параметра за одну секунду определяется как Герц (Гц). Звуковая частота 10 кГц соответствует 10000 колебаний в секунду. Человеческое ухо может воспринимать частоты в диапазоне от 20 Гц до 15000-16000 Гц. Видеосигнал, в соответствии с упомянутыми выше стандартами, может иметь частоту от примерно 0 Гц до 5-10 МГц.

Чем выше частота, тем точнее детали в видеосигнале.

Насколько высокую частоту мы можем использовать, зависит, прежде всего, от снимающего устройства (камеры), но также и от средств передачи (коаксиального кабеля, микроволновых средств, волоконной оптики) и средств обработки/воспроизведения (видеомагнитофона, памяти кадров, жесткого диска, монитора).

Временной анализ любого электрического сигнала (в противоположность анализу частоты) можно проводить при помощи электронного инструмента, который называется осциллограф. Осциллограф работает по принципу ТВ-монитора, только в данном случае, сканирование электронного луча следует за напряжением видеосигнала в вертикальном направлении, в то время как по горизонтали единственной переменной является время. С так называемым регулированием временной развертки можно проанализировать видеосигналы от полевого режима (20 миллисекунд) до ширины строчной синхронизации (5 микросекунд).

На фотографии слева мы можем видеть типичный вид видеосигнала CCIR на экране осциллографа.

Результаты измерения, полученные с помощью осциллографа, являются наиболее объективными признаками качества видеосигнала, поэтому этим прибором непременно должен быть оснащен любой серьезный специалист по видеонаблюдению. Во-первых, осциллограф позволяет очень легко видеть качество сигнала, игнорируя любые возможные сбои яркости/контраста на мониторе.

Рис. 4.22.Осциллограф

Можно легко проверить и подтвердить уровни синхронизации видеосигнала независимо от того, имеет ли видеосигнал надлежащую оконечную нагрузку в 75 Ом, насколько далек сигнал (уменьшение амплитуды сигнала и потери высоких частот) и есть ли помехи в конкретном кабеле. Для корректных измерений всегда требуется правильная оконечная нагрузка, то есть, входное полное сопротивление осциллографа высоко и каким бы способом ни устанавливался сигнал, необходимо, чтобы на конце линии передачи сигнала было 75 Ом.

Примеры корректного соединения осциллографа с целью правильного измерения видеосигнала представлены на рис. 4.23.

Рис. 4.23. Как правильно проводить измерения при помощи осциллографа

Рис. 4.24.Измерительный комплекс Tektronix 1781

Анализатор спектра

Перейти на страницу:

Поиск

Похожие книги