Геометрии уже в эпоху Эвклида удалось придать последовательно стройный рациональный облик – как выражаются математики, аксиоматизировать ее: сформулировать несколько ясных и строгих положений, из которых дедуктивно выводятся все остальные истины. С арифметикой подобного, несмотря на множество попыток, проделать не удалось. Более того, как уже отмечалось, в 1931 г. К.Гедель – в теоремах о неполноте – доказал, что это в принципе невозможно: мы волей-неволей будем упираться в произвольные положения (если истинны они, то не менее истинны и диаметрально противоположные). Античность же не только строго различала арифметику и геометрию, но и традиционно наделяла первую более высоким гносеологическим статусом [152, c. 32] – именно из-за того, что геометрия слишком привязана к чувственной реальности.
Поместив нуль в геометрическую оправу, европейцы во многом выхолостили его реальное содержание, они до сих пор во многом воспринимают его как нечто "наглядное", "материальное", "позитивное". Весьма отдаленное отношение к логико-арифметическому нулю имеет, в частности, аутентичное для "геометризованных" дифференциального и интегрального исчислений понятие бесконечно малой величины, которая к нулю неограниченно стремится, но никогда не достигает. Европейцы добились высокой искусности в методах огибания проблемы, в избавлении от нулей и бесконечностей, например, при раскрытии так называемых неопределенностей. Индийцы же находят мужество не отводить глаза, и их интуиция нуля несравненно богаче.(7) Если прибегнуть к помощи психоаналитических трактовок, европейцы как бы инстинктивно защищаются от чуждой им ментальной сущности, а ведь ничто, как известно, не может быть сильнее предубеждения. Повторим, мы обращаемся с нулем операционно, он – не предмет нашей внутренней жизни. Чтобы избежать опасной инфекции, мы прикасаемся к нему посредством пинцета.
В некоторых моментах нуль все же занимает присущее ему особое, центральное положение. Так, начало координат обычно помещается в точке нуль. В нуле пересекаются или из него исходят все разнонаправленные координатные оси. Даже на графиках, когда по одной оси мы откладываем, например, силы, выраженные в килограммах, а по другой – расстояние в метрах, в нуле они пересекаются, т.е. утрачивается различие между различными физическими единицами измерений. Отсутствие килограммов и отсутствие метров изображается одной и той же точкой, понимается как одно и то же; между логически разнородными понятиями в нуле стираются границы. Но это все же
Нет, я далек от намерений представлять европейцев в роли малосведущих варваров. И в нашей культуре есть следы чего-то подобного индийской дороге. Так, античность и позднее средневековье разрабатывают так называемый
В ХIХ в. в фундамент термодинамики был заложены три конструктивных "не": невозможно построить вечный двигатель (первое начало термодинамики), невозможен вечный двигатель второго рода (второе начало), невозможно достигнуть абсолютного нуля температур (теорема Нернста, называемая иногда третьим началом). Термодинамика, несмотря на свою стройность, аксиоматическое построение, – достаточно странная наука, остающаяся в значительной мере концептуально обособленной от прочих, "позитивных" физических отраслей. В отличие от механики, электромагнетизма и пр., она позволяет находить формы физических процессов, не вдаваясь в их конкретный механизм. Внимание к формам, принципы запрета перекочевали затем в релятивистскую механику (невозможно определить абсолютную скорость движения) и в квантовую (принцип неопределенности Гейзенберга, принцип Паули…).