Возникает важный вопрос — что делают эти алгоритмы для элементов с одинаковыми значениями атрибута? Предположим, вектор содержит 12 элементов с рангом 1 и 15 элементов с рангом 2. В этом случае выборка 20 «лучших» объектов Widget будет состоять из 12 объектов с рангом 1 и 8 из 15 объектов с рангом 2. Но как алгоритмы partial_sort и nth_element определяют, какие из 15 объектов следует отобрать в «верхнюю двадцатку»? И как алгоритм sort выбирает относительный порядок размещения элементов при совпадении рангов?

Алгоритмы partial_sort и nth_element упорядочивают эквивалентные элементы по своему усмотрению, и сделать с этим ничего нельзя (понятие эквивалентности рассматривается в совете 19). Когда в приведенном примере возникает задача заполнения объектами Widget с рангом 2 восьми последних позиций в «верхней двадцатке», алгоритм выберет такие объекты, какие сочтет нужным. Впрочем, такое поведение вполне разумно. Если вы запрашиваете 20 «лучших» объектов Widget, а некоторых объекты равны, то в результате возвращенные объекты будут по крайней мере «не хуже» тех, которые возвращены не были.

Полноценная сортировка обладает несколько большими возможностями. Некоторые алгоритмы сортировки стабильны. При стабильной сортировке два эквивалентных элемента в интервале сохраняют свои относительные позиции после сортировки. Таким образом, если Widget A предшествует Widget B в несортированном векторе widgets и при этом ранги двух объектов совпадают, стабильный алгоритм сортировки гарантирует, что после сортировки Widget A по-прежнему будет предшествовать Widget B. Нестабильный алгоритм такой гарантии не дает.

Алгоритм partial_sort, как и алгоритм nth_element, стабильным не является. Алгоритм sort также не обладает свойством стабильности, но существует специальный алгоритм stable_sort, который, как следует из его названия, является стабильным. При необходимости выполнить стабильную сортировку, вероятно, следует воспользоваться stable_sort. В STL не входят стабильные версии partial_sort и nth_element.

Следует заметить, что алгоритм nth_element чрезвычайно универсален. Помимо выделения n верхних элементов в интервале, он также может использоваться для вычисления медианы по интервалу и поиска значения конкретного процентиля[3]:

vector::iterator begin(widgets.begin); // Вспомогательные переменные

vector::iterator end(widgets.end); // для начального и конечного

                                             // итераторов widgets

vector::iterator goalPosition; // Итератор, указывающий на

                                       // интересующий нас объект Widget

// Следующий фрагмент находит Widget с рангом median

goalPosition = begin + widgets.size/2; // Нужный объект находится

                                         // в середине отсортированного вектора

nth_element(begin, goalPosition, end, // Найти ранг median в widgets

 qualityCompare);

… // goalPositon теперь указывает

  // на Widget с рангом median

// Следующий фрагмент находит Widget с уровнем 75 процентилей

vector::size_type goalOffset = // Вычислить удаление нужного

 0.25*widgets.size;                  // объекта Widget от начала

nth_element(begin, egin+goalOffset, nd, // Найти ранг в

 ualityCompare);                        // begin+goalOffset теперь

…                                       // указывает на Widget

                                        // с уровнем 75 процентилей

Алгоритмы sort, stable_sort и partial_sort хорошо подходят для упорядочивания результатов сортировки, а алгоритм nth_element решает задачу идентификации верхних n элементов или элемента, находящегося в заданной позиции. Иногда возникает задача, близкая к алгоритму nth_element, но несколько отличающаяся от него. Предположим, вместо 20 объектов Widget с максимальным рангом потребовалось выделить все объекты Widget с рангом 1 или 2. Конечно, можно отсортировать вектор по рангу и затем найти первый элемент с рангом, большим 2. Найденный элемент определяет начало интервала с объектами Widget, ранг которых превышает 2.

Перейти на страницу:

Похожие книги