Когда в 1604 году Галилей вновь возвращается к проблеме свободного падения тел, он располагает, как мы видели, формулами, в которых связываются длительность падения и пройденное расстояние; он располагает, как мы только что выяснили, важнейшим принципом сохранения движения и скорости. С другой стороны, он отказывается от всякой попытки каузального объяснения и ищет лишь принцип, аксиому, которая позволила бы вывести дескриптивные законы движения. Мы также видели, что рассмотрение движения (движения вообще и движения свободно падающего тела в частности) с точки зрения причин выводило понятие времени на первый план. Таким образом, неудивительно, что отказ от каузального объяснения подкрепляет тенденцию к геометрическому и, следовательно, к пространственному представлению движения. Вместо того чтобы
Вот, собственно, что он пишет225:
Я полагаю (и, вероятно, смогу это доказать), что тяжелое тело, падающее естественным образом, движется, непрерывно увеличивая свою скорость, сообразно тому как увеличивается расстояние от точки, от которой оно начало движение: так, например, если тело отправляется от точки А, падая вдоль линии АВ, я полагаю, что степень скорости в точке D будет настолько больше, чем степень скорости в точке С, насколько расстояние DA больше, чем CA, и таким образом степень скорости в Е относится к степени скорости в D как EA относится к DA, и таким образом в каждой точке линии АВ [тело] наделено степенями скорости, пропорциональными расстояниям от тех самых точек до пункта А. Этот принцип мне кажется очень естественным и отвечающим всякому опыту, наблюдаемому в приборах и машинах, работающих за счет толчков, где удар производит тем больший эффект, чем больше высота, с которой он обрушивается; и, предположив данный принцип, я докажу все прочее.