Опять положим наши монеты «орлом» кверху. Сделаем теперь нечетное число переворачиваний, снова каждый раз выбирая монету независимо от того, какая бралась в предыдущий раз. Можно убедиться, что в итоге всегда получится один из четырех вариантов, изображенных на следующем рисунке (стр. 195).

Про первый набор комбинаций можно сказать, что он имеет положительную четность; про второй — отрицательную. Эксперимент показывает, что четность комбинации сохраняется при любом четном числе переворачиваний. Если вы начнете с четной комбинации и произведете, скажем, десять переворачиваний, то конечная комбинация, очевидно, будет четной. Если же вы возьмете нечетную комбинацию и затем снова перевернете монеты десять раз, вы, безусловно, получите в итоге нечетный набор. Напротив, любая комбинация изменит свою четность, если в ней производится нечетное число переворачиваний.

Многие фокусы с картами, монетами и другими предметами основаны именно на этом. Предложите, например, кому-нибудь разложить на столе десять монет.

После этого отвернитесь и командуйте вашему партнеру, чтобы он один раз (на каждую вашу команду) переворачивал любую монету. Вы можете прекратить фокус в любой момент, когда этого захочет ваш партнер, повернуться к нему и угадать, как лежит накрытая его рукой монета. Это делается с помощью простого применения того, что математики называют «проверкой на четность». Перед тем как отвернуться, сосчитайте число «орлов» и запомните, четное оно или нечетное. Если ваш партнер переворачивал монеты четное число раз, то, как вы знаете, четность числа «орлов» должна остаться той же; нечетное же число переворачиваний меняет четность. Поэтому повернувшись и быстро сосчитав число «орлов», вы сразу сможете понять, как лежит спрятанная монета. Видоизмените фокус: предложите партнеру накрыть рукой не одну, а две монеты и после аналогичным образом «угадайте», одинаково они лежат или нет.

Упражнение 14. Поставьте шесть стаканов в ряд: три вверх дном, а три обычным образом. Возьмите в каждую руку по стакану и одновременно переверните их. (Если стакан стоял вверх дном, то теперь он станет нормально, и наоборот.) Проделайте то же самое с любой другой парой. Можете продолжать так сколько угодно. Можно ли добиться, чтобы все стаканы стояли одинаково — нормально или вверх дном? Как подтвердить ответ математически?

Понятие четности может быть применено к вращающимся телам в трехмерном пространстве следующим образом. Рассмотрим вращающийся цилиндр, показанный сплошными линиями на рис. 57. Положение точек на этом цилиндре может быть определено относительно координатной системы трех взаимно перпендикулярных осей, обозначенных, как обычно, буквами х, у, z. Местонахождение любой точки на цилиндре определяется тремя числами. Первое дает измеренное вдоль оси х расстояние от данной точки до плоскости, проходящей через начало координат перпендикулярно этой оси. Второе число есть аналогичная величина, измеренная вдоль оси у; третье — вдоль оси z.

Рис. 57. Вращающийся цилиндр имеет положительную четность.Рис. 58. Вращающийся конус имеет отрицательную четность.

Цилиндр, нарисованный пунктирными линиями, есть тело, которое образуется, если во всех тройках чисел (координатах) х, у, z заменить z на —z. Заметим, что при вращении верхнего цилиндра в направлении, показанном стрелками, точка А движется к А'. Положение точек А и А' на нижнем цилиндре указывает, что он вращается в том же направлении. При выполнении преобразования нижний цилиндр был перевернут относительно верхнего, но, поскольку верхний и нижний его торцы неразличимы, оба цилиндра (и направления их вращения) совершенно идентичны.

Рассмотрим теперь вращающийся конус, показанный сплошными линиями на рис. 58. Внизу изображен конус, образующийся при замене всех координат z на —z. Идентичны ли два тела? Нет, они являются зеркальными отображениями друг друга. Если поставить верхний конус основанием вниз и совместить его с нижним, то обнаружится, что направления вращения конусов стали противоположными; если же сохранять направления вращения одинаковыми, то придется оставить конусы вершинами навстречу друг другу.

Перейти на страницу:

Все книги серии В мире науки и техники

Похожие книги