Нетрудно видеть, что любая симметричная система в трехмерном пространстве при обращении знака любой из координат не изменяется. О таких системах будем говорить, что они имеют положительную четность. Асимметричные же системы при таком преобразовании переходят в свои зеркальные изображения, иными словами, обладают отрицательной четностью. Три координаты, каждая из которых может быть как положительной, так и отрицательной, могут быть сопоставлены с тремя монетами, каждая из которых имеет два положения: «орел» или «решка». Если некоторая система асимметрична, то любое нечетное число перемен знаков координат приводит к тому же результату, что и одно изменение, а именно оно переводит систему в ее зеркальное отображение. Так будет, если, например, изменить знаки у всех трех координат, поскольку число 3 нечетное. Каждое отдельное изменение знака координаты эквивалентно отображению в зеркале, но если зеркальное изображение снова отобразить в зеркале, то мы получим то, с чего начинали. Значит, любое четное число изменений знаков координат оставляет систему неизменной относительно «левого» и «правого». (Вот почему два зеркала, о которых говорилось в гл. 3, дают не перевернутое изображение: они меняют направление двух осей координатной системы.) Всякое же нечетное число изменений знака переводит систему в ее зеркальное изображение. Конечно, если система симметрична (то есть имеет положительную четность), то любое число изменений знака — четное или нечетное — не приводит к изменению системы.

В двадцатых годах было установлено, что эти математические понятия могут быть с успехом применены в физике, а именно — связаны с волновыми функциями, описывающими элементарные частицы. Каждая такая функция зависит от пространственных координат х, у, z. Если изменение знака одной (или всех трех) координаты оставляет функцию неизменной, то такой функции приписывается положительная четность; такой функции приписывается квантовое число +1. О функции, которая меняет знак при изменении одной (или всех трех) координаты, говорят, что ее четность отрицательна, и она характеризуется квантовым числом −1.

Теоретические соображения (такие, как лево-правая симметрия самого пространства), как и эксперименты с атомными и субатомными частицами, указывают на то, что в любой изолированной системе четность всегда сохраняется. Пусть, например, частица с положительной (+1) четностью распадается на две частицы. Эти две новые частицы могут иметь либо обе положительную, либо обе отрицательную четность. В обоих случаях сумма четностей положительна, поскольку и сумма двух четных чисел, и сумма двух нечетных чисел всегда четны. То же утверждение можно выразить иначе: произведение четностей равно +1 [(+1)×(+1) = (−1)×(−1) = +1]. Конечное состояние системы имеет четность +1. Четность сохраняется. В случае распада четной частицы на две — одну тоже четную, другую нечетную — полная четность конечного состояния была бы отрицательной, то есть четность не сохранялась бы.

Не следует забывать, что мы имеем дело уже не с простыми геометрическими фигурами в трехмерном пространстве, а со сложными абстрактными формулами квантовой механики. Здесь не представляется возможным вдаваться в детали точного смысла сохранения четности в квантовой теории и рассматривать множество причин, по которым это утверждение оказывается ценной концепцией. К счастью, смысл этой идеи легко доступен пониманию. В 1927 году Е. Вигнер, венгерский физик, работающий в Принстонском университете, смог показать, что сохранение четности целиком покоится на том факте, что все силы, участвующие во взаимодействии элементарных частиц, свободны от какой-либо лево-правой несимметрии[42]. Иными словами, любое нарушение четности было бы эквивалентно нарушению зеркальной симметрии в основных законах, описывающих структуру и взаимодействие частиц. Физики давно уже знали, что зеркальная симметрия господствует в макромире вращающихся планет и соударяющихся бильярдных шаров. Сохранение четности предполагает, что эта зеркальная симметрия распространяется и до атомного и субатомного уровней. Природа, по-видимому, нигде не дает предпочтения одной из сторон (правой или левой).

Это не означает, что в природе нет асимметрии вообще, а говорит лишь за то, что все, что в природе почему-либо происходит влево, с таким же успехом может осуществляться и вправо. Например, наша Земля при вращении вокруг движущегося относительно звезд Солнца совершает движение по определенным образом ориентированной спирали. Здесь мы имеем конкретный пример асимметрии в астрономии. Но эта асимметрия не более, чем случайность в развитии Галактики. Другие планеты при вращении вокруг своих солнц, безусловно, имеют орбиты, закрученные в противоположную сторону.

Перейти на страницу:

Все книги серии В мире науки и техники

Похожие книги