Мы же ограничимся комментарием к аналогии разделенной линии, о которой Платон пишет в шестой книге «Государства» (см. схему на следующей странице). Существуют три воплощения предмета «кровать»: «кровать, созданная Богом», «кровать, сделанная плотником» и «кровать, нарисованная художником». «Бог, — говорит Платон, — желая быть истинным создателем истинно существующей кровати, [...] создал ее по природе своей единственной». Плотник же делает копии. А художник копирует плотника, но не «настоящую кровать».
В этом примере затрагивается вопрос существования, один из основных в платоновской философии, поскольку, по Платону, невозможно от эпистемологии (то есть знания или познания) перейти к онтологии (реальности, являющейся предметом познания). Он задается следующими вопросами: все ли кровати реальны, или же только некоторые, или ни одна? Что мы подразумеваем под «реальным», точнее, о какой реальности мы говорим, когда утверждаем, что научное знание состоит в «истинном познании реальности»? Если мы сузим вопрос до области математики, то как надо понимать математические объекты (вопрос эпистемологического характера) и что мы можем сказать об их существовании (проблема онтологического характера)?
По Платону, есть две реальности: реальность умопостигаемого мира идей, которую можно познать истинным знанием, и зримая реальность окружающего нас мира, о которой можно иметь лишь мнение. Приводя аналогию с разделенной линией, философ говорит об умопостигаемом, имея в виду, что мы можем понять только верхний уровень линии, неизменный уровень идей, нижний же отрезок относится к изменчивому миру, и о нем мы можем только составить мнение.
По этой аналогии изменяющиеся, преходящие объекты (расположенные в нижней части линии) являются предметом doxa (мнения), а непреходящие (в верхней линии) — предметом gnosis (знания). Математические объекты вечны, но занимают промежуточное положение: они не принадлежат ни нижнему, ни верхнему уровню.
Платон устанавливает четкое разделение между способами рассуждения в диалектической речи (свойственной философу) и научной (присущей математику).
Математическое рассуждение использует гипотезы. Умопостижение, присущее философу, идет дальше, чем построение гипотез. Оно заключается не в математических рассуждениях, идущих от гипотез к теоремам, а в философии и ставит вопросы самой математике: что означают гипотезы? Почему они приемлемы? Могут ли они быть другими? Математической деятельности не хватает возвращения от выводов к гипотезам.
О математических фигурах Платон говорит: