Мы определим эти силы для балки круглого сечения, но ответ будет пригоден для балки любой формы. Чтобы сберечь время, мы кое-где упростим дело, так что теория, которую мы разовьем, будет только приближенной. Наши результаты верны лишь при том условии, что радиус изгиба­ния много больше толщины балки.

Представьте, что вы ухватились за оба конца прямой балки и согнули ее в виде кривой, похожей на ту, что изображена на фиг. 38.11.

Фиг. 38.11. Изогнутая балка.

Что же происходит внутри балки? Раз она искрив­лена, значит, материал на внутренней стороне сгиба сжат, а на внешней стороне растянут. Но имеется какая-то поверхность, более или менее параллельная оси балки, которая и не сжата, и не растянута. Называется она нейтральной поверхностью. По-видимому, эта поверхность проходит где-то «посредине» поперечного сечения. Можно показать (но я не буду этого здесь делать), что для небольшого изгиба простой балки нейтральная поверхность проходит через «центр тяжести» поперечного се­чения. Но это справедливо только для «чистого» сгиба, т. е. когда балка не растягивается и не сжимается как целое.

При чистом сгибе тонкий поперечный отрезок балки возму­щен (фиг. 38.12, а).

Фиг. 38.12. Маленький отрезок изогнутой балки (а) и поперечное сечение балки (б).

Материал под нейтральной поверхностью испытывает деформацию сжатия, которая пропорциональна рас­стоянию от нейтральной поверхности, а материал над ней ра­стянут тоже пропорционально расстоянию от нейтральной по­верхности. Таким образом, продольное удлинение Dl пропорцио­нально высоте у. Константа пропорциональности равна просто длине l, деленной на радиус кривизны балки (см. фиг. 38.12):

Dl/l=y/R.

Так что напряжение, т. е. сила, действующая на единичную площадь в некоторой маленькой полоске вблизи у, тоже про­порциональна расстоянию от нейтральной поверхности

Теперь рассмотрим те си­лы, которые привели бы к подобной деформации. Силы, действующие на маленький отрезок, изображенный на фиг. 38.12, показаны на том же рисунке. Если мы возьмем любое поперечное сечение, то действующие на нем силы направлены в одну сторону выше нейтральной поверхно­сти и в другую — ниже ее. Получается пара сил, кото­рая создает «изгибающий мо­мент», под которым мы понимаем момент силы относительно нейтральной линии. Интегрируя произведение силы на расстояние от нейтральной поверхности, можно вычислить полный момент на одной из граней отрезка фиг. 38.12:

Согласно (38.34), dF=Y(y/R)dA, так что

Но интеграл от y2dA можно назвать «моментом инерции» гео­метрического поперечного сечения относительно горизонталь­ной оси, проходящей через его «центр масс»; мы будем обоз­начать его через I, т. е.

Уравнение (38.36) дает нам соот­ношение между изгибающим момен­том и кривизной балки 1/R. «Жесткость» балки пропорциональна Y и моменту инерции I. Другими словами, если вы хотите какую-то балку, скажем из алюминия, сделать как можно жестче, то вы должны как можно больше вещества поме­стить как можно дальше от оси, относительно которой берется момент инерции. Но этого нельзя доводить до предела, ибо тогда балка не будет искривляться так, как мы предположили: она согнется или скрутится и снова станет слабее. Вот почему каркасные балки делают в форме буквы I или Н (фиг. 38.13).

Фиг. 38.13. Двутавровая балка.

В качестве примера применения нашего уравнения (38.36) для балки вычислим отклонение консольной балки под дейст­вием сосредоточенной силы W, действующей на ее свободный конец (фиг. 38.14).

Фиг. 38.14. Консольная балка с нагрузкой на конце.

(Консольная балка закреплена одним концом, который вмурован в стенку.) Какая же тогда будет форма балки? Обозначим отклонение на расстоянии х от зак­репленного конца через z; мы хотим найти z(x). Будем вычис­лять только малые отклонения. Как вы знаете из курса мате­матики, кривизна 1/R любой кривой z(x) задается выражением

Нас интересуют только малые изгибы (обычная вещь в ин­женерных конструкциях), поэтому квадратом производной (dz/dx)2 можно пренебречь по сравнению с единицей и считать

Нам нужно еще знать изгибающий момент . Он является функцией от х, так как в любом поперечном сечении он равен моменту относительно нейтральной оси. Весом самой балки пренебрежем и будем учитывать только силу W, действующую вниз на свободный ее конец. (Если хотите, можете сами учесть ее вес.) При этом изгибающий момент на расстоянии х равен

ибо это и есть момент сил относительно точки х, с которым действует груз W, т. е. груз, который должен поддерживать балку. Получаем

или

Это уравнение можно проинтегрировать без всяких фокусов и получить

воспользовавшись предварительно нашим предположением, что z(0)=0 и что dz/dx в точке x=0 тоже равно нулю. Это и есть граничные условия. А отклонение конца будет

Перейти на страницу:

Поиск

Похожие книги