т, е. отклонение возрастает пропорционально кубу длины балки. При выводе нашей приближенной теории мы предполагали, что при изгибании поперечное сечение бруска не изменяется. Когда толщина бруска мала по сравнению с радиусом кривизны, поперечное сечение изменяется очень мало и все отлично. Однако в общем случае этим эффектом пренебречь нельзя — согните пальцами канцелярскую резин­ку и вы сами убедитесь в этом. Если первоначально попереч­ное сечение было прямоуголь­ным, то, согнув резинку, вы уви­дите, как она выпирает у основания (фиг. 38.15).

Фиг. 38.15. Согнутая резинка (а) и ее поперечное сечение (б).

Это получается потому, что, согласно отноше­нию Пуассона, при сжатии основания материал «раздается» вбок. Резинку очень легко согнуть или растянуть, но она несколько напоминает жидкость в том отношении, что изменить ее объем очень трудно. Это и сказывается при сгибании резинки. Для несжимаемых материалов отношение Пуассона было бы точно равно 1/2, для резинки те оно близко к этому числу.

§ 5. Продольный изгиб

Теперь воспользуемся нашей теорией, чтобы понять, что про­исходит при продольном изгибе бруска, опоры или стержня. Рассмотрим то, что изображено на фиг. 38.16.

Фиг. 38.16. Продольно изогну­тая балка.

Здесь стержень, обычно прямой, удерживается в согнутом виде двумя проти­воположными силами, давящими на его концы. Найдем форму стержня и величину сил, действующих на концы.

Пусть отклонение стержня от прямой линии между концами будет у(х), где х — расстояние от одного конца. Изгибающий момент в точке Р на рисунке равен силе F, умноженной на плечо, перпендикулярное направлению у:

Воспользовавшись выражением для момента (38.36), имеем

При малых отклонениях можно считать 1/R=-d2y/dx2 (от­рицательный знак выбран потому, что кривизна направлена вниз). Отсюда

т. е. появилось дифференциальное уравнение для синуса. Таким образом, для малых отклонений кривая такого про­дольно изогнутого стержня представляет синусоиду. «Длина волны» l. этой синусоиды в два раза больше расстояния L между концами. Если изгиб невелик, она просто равна уд­военной длине неизогнутого стержня. Таким образом, получается кривая

Беря вторую производную, находим

Сравнивая это с (38.45), видим, что сила равна

Для малого продольного изгиба сила не зависит от перемеще­ния у!

Физически же получается вот что. Если сила F меньше опре­деляемой уравнением (38.46), то никакого продольного изгиба не происходит. Но если она хоть немного больше этой силы, то балка внезапно и очень сильно согнется, т. е. под действием сил, превышающих критическую величину p2YI/L2 (часто назы­ваемую «силой Эйлера»), балка будет «гнуться». Если на вто­ром этаже здания разместить такой груз, что нагрузка на под­держивающие колонны превысит силу Эйлера, то здание рух­нет. Другая область, где очень важны продольно изгибающие силы,— это космические ракеты. С одной стороны, ракета дол­жна выдерживать свой вес на стартовой площадке и вынести напряжения во время ускорения, а с другой — очень важно свести вес всей конструкции до минимума, чтобы полезная на­грузка и полезная мощность двигателей были как можно больше.

Фактически превышение силы Эйлера вовсе не означает, что после этого балка полностью разрушится. Когда отклонение ста­новится большим, сила благодаря члену (dz/dx)2 в уравнении (38.38), которым мы пренебрегли, будет на самом деле больше вычисленной. Чтобы найти силы при большом продольном изги­бании стержня, мы должны вернуться к точному уравнению (38.44), которое получалось до использования приближенной связи между R и y.

Уравнение (38.44) имеет довольно простые геометрические свойства. Решается оно немного сложнее, но зато гораздо интереснее. Вмес­то того чтобы описывать кривую через х и у, можно воспользовать­ся двумя новыми переменными:

S — расстоянием вдоль кривой и

q— наклоном касательной к кри­вой (фиг. 38.17.)

Фиг. 38.17. Координа­ты кривой продольно изогнутой балки S и q.

Тогда кривизна будет равна скорости изменения угла с расстоянием

Поэтому точное уравнение (38.44) можно записать в виде

После взятия производной этого уравнения по S и замены dy/dS на sinq получим

[Если углы q малы, то мы снова приходим к уравнению (38.45), стало быть здесь все в порядке.

Не знаю, можете ли вы еще удивляться, но уравнение (38.47) получилось в точности таким же, как и для колебаний маятника с большой амплитудой (разумеется, с заменой F/YI другой постоянной). Еще раньше, в гл. 9 (вып. 1), мы узнали, как нахо­дить решение такого уравнения численным методом. В ответе вы получите очаровательную кривую. На фиг. 38.18 показаны три кривые для разных значений постоянной F/YI.

Перейти на страницу:

Поиск

Похожие книги