Мы стремимся узнать всё, что только можно, об импульсе частицы (скорость которой может быть очень близка к скорости света), исходя из данных ньютоновской физики об импульсе частицы с очень малой скоростью. Для этих целей анализ скользящего соударения подходит идеально. Мы можем подобрать такое столкновение, при котором частица-мишень обладает сколь угодно малой скоростью не только до соударения, но и после него (частица 𝐵 на рис. 84). Тогда импульс частицы-мишени может быть получен по ньютоновской формуле 𝑝=𝑚β как до, так и после соударения. Исходя из этого, легко определить изменение импульса медленной частицы (𝐵) в процессе соударения, что позволит нам найти изменение импульса и даже самый импульс быстрой частицы (𝐴). Исходя из симметрии схемы столкновения, очевидно, что приобретённый частицей 𝐵 импульс вдвое превышает величину её импульса до соударения, так что

1

2

Изменение

импульса 𝐵

=

𝑚

𝑑𝑦

𝑑𝑡

.

Импульс пропорционален величине перемещения частицы за единицу собственного времени

Частица 𝐴 передаёт часть импульса частице 𝐵, но не за счёт изменения абсолютной величины своего импульса, а за счёт изменения направления своего вектора импульса. Иными словами, переданный импульс составляет меньшую и известную нам сторону треугольника импульсов. Другие две (равные друг другу) стороны этого треугольника являются бóльшими и неизвестны нам. Однако мы знаем, чему равны как длинные, так и короткая стороны подобного треугольника — треугольника перемещений. Из пропорциональности соответствующих сторон подобных треугольников мы сразу же получаем (см. рис. 85) выражение для импульса быстро движущейся частицы 𝐴:

𝒑=𝑚

𝑑𝒓

𝑑τ

=𝑚

Перемещение за единицу

собственного времени

.

(70)

Компоненты этого вектора по отдельности 1) равны:

𝑝

𝑥

=

𝑚

𝑑𝑥

𝑑τ

,

𝑝

𝑦

=

𝑚

𝑑𝑦

𝑑τ

,

𝑝

𝑧

=

𝑚

𝑑𝑧

𝑑τ

(71)

в лабораторной системе отсчёта.

1) Почему не 𝑝𝑥 а 𝑝𝑥? В четырёхмерной геометрии пространства-времени в отличие от эвклидовой геометрии пространства существенно расположение индекса (см. подробности относительно стандартных обозначений в примечании на стр. 157).

В системе отсчёта ракеты компоненты импульса даются выражениями, аналогичными формулам (71) с той лишь разницей, что в них фигурируют 𝑑𝑥', 𝑑𝑦' и 𝑑𝑧' — компоненты перемещения, измеренные в системе отсчёта ракеты. Интервал собственного времени 𝑑τ' между двумя близкими событиями на мировой линии частицы обладает одним и тем же значением при вычислении исходя из данных, полученных на ракете, и при вычислении на основании лабораторных измерений («инвариантность интервала»). Поэтому излишне различать 𝑑τ и 𝑑τ'. Кроме того, величина 𝑑𝑦' (в системе отсчёта ракеты) равна величине 𝑑𝑦 (в лабораторной системе отсчёта), а также 𝑑𝑧=𝑑𝑧' Следовательно, компоненты импульса

𝑝

𝑦

=

𝑚

𝑑𝑦

𝑑τ

и

𝑝

𝑧

=

𝑚

𝑑𝑧

𝑑τ

,

перпендикулярные к направлению движения ракеты относительно лабораторной системы отсчёта, не зависят от скорости этого движения.

Импульс аналогичен перемещению в том отношении, что поперечные компоненты этих обоих векторов не зависят от скорости движения наблюдателя. Такая аналогия этих двух векторов имеет очень простую причину: импульс получается из перемещения (Δ𝑥, Δ𝑦, Δ𝑧) путём умножения на величину 𝑚/Δτ, одинаковую во всех инерциальных системах отсчёта!

Массу наиболее целесообразно определять как не зависящий от скорости коэффициент в выражении для импульса

Из исследования импульса, проделанного на рис. 85, ясно, что величина 𝑚 — это масса в том смысле, в каком её понимают в ньютоновской механике. Поэтому 𝑚 есть величина постоянная, одинаковая для всех скоростей, всех положений и всех моментов времени. Всё различие между релятивистской формулой для импульса (например, 𝑚⋅𝑑𝑥/𝑑τ) и соответствующей ньютоновской формулой (𝑚⋅𝑑𝑥/𝑑𝑡) сводится поэтому к различию между собственным и лабораторным временем, а не к различию в 𝑚 при этих двух описаниях природы. В некоторых прежних изложениях теории относительности ньютоновское выражение для импульса (𝑚⋅𝑑𝑥/𝑑𝑡) исправлялось не путём простой замены 𝑑𝑡 на 𝑑τ, принятой сейчас, а путём введения «массы движения», зависящей от скорости таким образом, чтобы можно было продолжать пользоваться формулами типа Ньютона, например:

𝑝

𝑥

релятивистская

величина

=

𝑚

движения

𝑑𝑥

𝑑τ

.

Эта масса движения должна тогда быть равна

𝑚

движения

=

𝑚

𝑑𝑡

𝑑τ

=

𝑚

√1-β²

.

(72)

Перейти на страницу:

Поиск

Похожие книги