Подставив (1) в уравнение Бернулли, имеем выражение для случая воздействия на жидкость только одной массовой силы:

Если разделить уравнение (2) на g (поскольку оно постоянное), то

Мы получили одну из самых часто применяемых в решении гидравлических задач формул, поэтому следует ее запомнить особенно хорошо.

Если требуется определить расположение частицы в двух разных положениях, то выполняется соотношение для координат Z1 и Z2, характеризующие эти положения

Можно переписать (4) в другой форме

<p>28. Случаи, когда массовых сил несколько</p>

В этом случае усложним задачу. Пусть на частицы жидкости действуют следующие силы: сила тяжести; центробежная сила инерции (переносит движение от центра); кориолисовая сила инерции, которая заставляет частицы вращаться вокруг оси Z с одновременным поступательным движением.

В этом случае мы получили возможность представить себе винтовое движение. Вращение происходит с угловой скоростью w. Нужно представить себе криволинейный участок некоторого потока жидкости, на этом участке поток как бы вращается вокруг некоторой оси с угловой скоростью.

Частным случаем такого потока можно считать гидравлическую струю. Вот и рассмотрим элементарную струйку жидкости и применим в отношении к ней уравнение Бернулли. Для этого поместим элементарную гидравлическую струю в координатную систему XYZ таким образом, чтобы плоскость YOX вращалась вокруг оси OZ.

Будем считать, что U – местная скорость жидкости во вращающейся плоскости YOX. Пусть

Fx1= Fy1= 0; Fz1=—g —

составляющие силы тяжести (то есть ее проекции на оси координат), отнесенные к единичной массе жидкости. К этой же массе приложена вторая сила – сила инерции ω2r, где r – расстояние от частицы до оси вращения ее компоненты.

Fx2= ω2x; Fy2= ω2y; Fz2= 0

из-за того, что ось OZ «не вращается».

Окончательно уравнение Бернулли. Для рассматриваемого случая:

Или, что одно и то же, после деления на g

Если рассмотреть два сечения элементарной струйки, то, применив вышеуказанный механизм, легко убедиться, что

где z1, h1, U1, V1, z2, h2, U2, V2 – параметры соответствующих сечений

<p>29. Энергетический смысл уравнения Бернулли</p>

Пусть теперь имеем установившееся движение жидкости, которая невязкая, несжимаемая.

И пусть она находится под воздействием сил тяжести и давления, тогда уравнение Бернулли имеет вид:

Теперь требуется идентифицировать каждое из слагаемых. Потенциальная энергия положения Z – это высота элементарной струйки над горизонтальной плоскостью сравнения. Жидкость с массой М на высоте Z от плоскости сравнения имеет некоторую потенциальную энергию MgZ. Тогда

Это та же потенциальная энергия, отнесенная к единичной массе. Поэтому Z называют удельной потенциальной энергией положения.

Движущаяся частица с массой Ми скоростью u имеет вес MG и кинематическую энергию U2/2g. Если соотнести кинематическую энергию с единичной массой, то

Полученное выражение есть не что иное, как последнее, третье слагаемое в уравнении Бернулли. Следовательно, U2/ 2 – это удельная кинетическая энергия струйки. Таким образом, общий энергетический смысл уравнения Бернулли таков: уравнение Бернулли представляет собой сумму, содержащую в себе полную удельную энергию сечения жидкости в потоке:

1) если полная энергия соотнесена с единичной массой, то она есть сумма gz + p/ρ + U2/ 2;

2) если полная энергия соотнесена с единичным объемом, то ρgz + p + pU2/ 2;

3) если полная энергия соотнесена единичному весу, то полная энергия есть сумма z + p/ρg + U2/ 2g. Не следует забывать, что удельная энергия определяется относительно плоскости сравнения: эта плоскость выбирается произвольно и горизонтально. Для любой пары точек, произвольно выбранной из потока, в котором установившееся движение и который движется потенциальноовихрево, а жидкость невязко-несжимаемая, суммарная и удельная энергия одинаковы, то есть распределены по потоку равномерно.

<p>30. Геометрический смысл уравнения Бернулли</p>

Основу теоретической части такой интерпретации составляет гидравлическое понятие напор, которое принято обозначать буквой Н, где

Гидродинамический напор Н состоит из следующих разновидностей напоров, которые входят в формулу (198) как слагаемые:

1) пьезометрический напор, если в (198) p = pизг, или гидростатический, если p ≠ pизг;

2) U2/2g – скоростной напор.

Все слагаемые имеют линейную размерность, их можно считать высотами. Назовем эти высоты:

1) z – геометрическая высота, или высота по положению;

2) p/ρg – высота, соответствующая давлению p;

3) U2/2g – скоростная высота, соответствующая скорости.

Геометрическое место концов высоты Н соответствует некоторой горизонтальной линии, которую принято называть напорной линией или линией удельной энергии.

Перейти на страницу:

Поиск

Все книги серии Шпаргалки

Похожие книги