Спустя несколько месяцев после смерти Гильберта в одной из периодических облав гестапо на евреев в Голландии был схвачен Блюменталь. Он был сослан в Терезин, маленькую чехословацкую деревушку, превращённую в гетто для старых евреев и других, за чьи смерти, по крайней мере вначале, нацисты не хотели брать прямой ответственности. Известно, что одно время его поместили в поезд, отправлявшийся в Освенцим, но потом по какой-то причине он был снят до отхода поезда. Он умер в Терезине в конце 1944 года.
17 января 1945 года умерла Кёте Гильберт. К тому времени она почти полностью ослепла. Около её гроба некому было выступить из старых друзей, а так как она, как и её муж, уже давно оставила церковь, не было и священника, который бы выполнил этот долг. В конце концов по просьбе Франца Гильберта несколько слов сказала одна женщина, никогда не знавшая её лучших дней.
В этом же году Кёнигсберг, почти полностью разрушенный, был взят советскими войсками.
XXV ПОСЛЕДНЕЕ СЛОВО
Могло показаться, что сладостный звук гамельнского Дудочника замолк навсегда. Однако по всему миру — в маленьких европейских странах, охваченных войной Англии, Японии, России, Соединённых Штатах — оставались ученики Гильберта и ученики учеников Гильберта.
За океаном даже во время войны можно было услышать отголоски старого. Герман Вейль с характерным для него рвением пытался создать в Принстоне, в Институте перспективных исследований, новый великий центр пламенной научной жизни — это его выражение, — напоминающий тот, который он знал в своей молодости в Гёттингене. В Нью-Йорке Рихард Курант устроился на заброшенной шляпной фабрике, шутливо называемой его друзьями «Институт Куранта». Дух Гильберта жил и там.
После смерти Гильберта в
Идеи, содержавшиеся в его работе по проблеме Гордана, далеко распространили методы и значение теории алгебраических инвариантов: из них выросла теория абстрактных полей, колец и модулей — короче говоря, современная алгебра. Большинство работ последующих теоретико-числовиков относились к тем плодородным областям, которые были открыты Гильбертом в его
А как обстоят дела с последней великой работой Гильберта — формализацией математики и установлением её непротиворечивости с помощью абсолютного доказательства? Несмотря на удар, нанесённый этой программе работой Гёделя, широкое гильбертово определение математического существования как свободы от противоречий, несомненно, восторжествовало над тесными рамками конструктивистских идей его противников. Вопрос о непротиворечивости математики, столь простой и очевидный до тех пор, пока он не был поднят Гильбертом, сыграл неоценимую по важности роль в истории математической мысли. «Это был хороший вопрос, — говорит один из современных математиков, — и только очень большому математику могло прийти в голову его задать».
Гёдель, никогда не встречавшийся и не переписывавшийся с Гильбертом, чувствует, что гильбертовы принципы оснований математики «остаются чрезвычайно интересными и важными, несмотря на мои отрицательные результаты».