Выяснилось, что гены иммунного ответа локализованы в пределах главной системы гистосовместимости. Каждая особь имеет уникальный набор генов. Этот факт имеет принципиальное значение, так как позволяет заключить, что сила иммунного ответа на бактериальный, вирусный или трансплантационный антиген не является некоторым общим свойством всех людей или животных какого-либо вида. Напротив, сила иммунного ответа всегда конкретна — на определенный антиген определенный индивидуум отвечает определенной иммунной реакцией. Из этого следует практически важный вывод: в зависимости от исходной иммунной реактивности к вакцине применять такие схемы профилактической вакцинации, которые наиболее эффективны для данного индивидуума.

В последующем как Бенацеррафу с сотрудниками, так и большой армии иммунологов и иммуногенетиков удалось выяснить функциональную уникальность Н-2 и HLA-систем в развитии иммунной реакции. Именно гены этих систем "дирижируют" иммунологической ситуацией в организме, связано ли это с реакцией отторжения чужеродного трансплантируемого материала, с развитием аутоиммунных расстройств, созданием эффективной вакцинации, возникновением раковой патологии иммунодефицитным состоянием.

Хромосомный регион, в котором картированы гены иммунного ответа, был назван в последующем I областью главного комплекса гистосовместимости. К 1975 году были обнаружены антигенные молекулы — 1а антигены, кодируемые генами I области. Показан I контроль взаимодействия макрофагов и Т-лимфоцитов, или Т- и Б-лимфоцитов, а без этих клеточных взаимодействий не развивается иммунный ответ. К 1977 году было показано, что функциональная активность различных классов Т-лимфоцитов кодируется различными генами главного комплекса гистосовместимости. Цитолитические Т-клетки реагируют на ранее известные Н-2 антигены — SD антигены. Функция Т-помощников и Т-эффекторов гиперчувствительности замедленного типа связана с продуктами, кодируемыми I областью. I область оказалась сложной и включает в себя 5 субобластей: А, В, J, E, С.

В самые последние годы было установлено, что узнавание чужеродных субстанций осуществляется Т-лимфоцитами только в том случае, если эти субстанции вступают в комплекс с антигенами гистосовместимости или с 1а молекулами. Последнее обосновано Бенацеррафом.

Конечно, все эти достижения связаны с именами десятков или даже сотен исследователей. Однако основополагающие факты и обобщения сделаны Снеллом, Доссе и Бенацеррафом. Значение современной иммуногенетики для биологии и медицины трудно переоценить. В рамках этой отрасли знаний находится решение таких проблем, как пересадка органов и тканей, разработка путей лечения аутоиммунных болезней, иммунотерапии и иммунопрофилактики рака, разработка новых принципов создания вакцин против еще не побежденных инфекций.

<p><strong>Век пересадки органов</strong></p><p><strong>Милан Гашек</strong></p>

Если иммунитет столь неумолим по отношению к чужеродным клеткам, значит, пересадки органов и тканей бессмысленны. Это правило до 1953 года было незыблемым, и сама идея замены больного органа здоровым для большинства представлялась бесперспективной. В 1953 году два человека — Питер Медавар и Милан Гашек — в двух разных странах, не сговариваясь, превратили эту идею в одну из самых обнадеживающих и увлекательных.

Летом 1952 года молодой сотрудник одной из лабораторий Института экспериментальной биологии Чехословацкой академии наук в Праге Милан Гашек поехал на птицеферму. И все началось... Во всяком случае, так утверждает сам Гашек.

В лаборатории задумали интересное исследование. Не совсем было ясно — вернее, совсем было не ясно, что получится, если в период эмбрионального развития двум зародышам сделать общую систему кровообращения. Так, чтобы в период, когда самостоятельные организмы еще не создались, кровь одного из них проходила через кровеносные сосуды другого, и наоборот. Главное здесь не столько общая система кровообращения, сколько общая кровь. Системы кровообращения различны, но в одном месте соединяются, и кровь обобществляется.

Не ясно было, возможно ли создать такую модель. Не ясно было, жизнеспособна ли такая модель. Не ясно было (если окажется жизнеспособной), отразится ли эта операция на длительности жизни. Не ясно было, как скажется в дальнейшей самостоятельной жизни (если такая наступит) взаимное влияние двух зародышей разных пород.

Поставить такой эксперимент на кроликах, собаках или любых других млекопитающих казалось невозможным. Ведь эмбрионы млекопитающих развиваются в матке материнского организма. Как соединить в эксперименте кровеносные системы двух эмбрионов, развивающихся в разных материнских организмах?

Невозможно...

Зародыши птиц куда доступнее. Они развиваются отдельно от матери. Их можно вообще растить без матери. Зародыши птиц отделены от мира лишь тонкой яичной скорлупой. Под скорлупой на одной из наружных оболочек зародыша развивается сеть кровеносных сосудов, связанная с системой кровообращения тела зародыша.

Перейти на страницу:

Все книги серии Эврика

Похожие книги