Успехи современной науки со времен Ньютона неоспоримы, но чем энергичнее внедряются ее результаты в виде различных машин и технологий во все сферы жизни, тем явственнее проступают ее недостатки. Один из главных недостатков классической и неклассической науки заключается в том, что современные технологии рассчитаны на использование больших количеств энергии и материалов, на использование больших давлений, напряжений, усилий, температур и т.д., что приводит ск загрязнению окружающей среды, исчерпанию источников энергии и материалов, гибели живой природы - то есть к тому, что называют экологическим кризисом.

Истоки этих недостатков лежат в самих парадигмах классической и неклассической науки, ее деятели слишком часто пользовались бритвой Оккама, срезая как бы все лишнее и слишком упрощая проблемы. В итоге сложилось стремление к «гениальной» простоте, физика заполнилась формулами из трех букв вроде закона Ома. И если это было простительно в докомпьютерный век, то с появлением мощных компьютеров, которые буквально входят в каждый дом, неоправданное упрощение недопустимо, недопустимо пренебрежение тонкими сущностями. Информатика имеет дело со слабыми сигналами, которые могут управлять большими процессами. Информатизация всех отраслей человеческой деятельности - это прежде всего выявление возможностей управления с помощью слабых сигналов, слабых по мощности, температуре, напряжению. Но для того, чтобы управлять системами, необходимо иметь новые модели различных процессов, в сами эти модели должна быть заложена возможность информационного управления. В этом сущность процесса информатизации. Посгнеклассическая наука должна иметь свои модели.

Ниже рассматривается новый класс таких моделей - лингво-комбинаторные модели и вопросы реализации их с помощью рекурсивных вычислительных систем для построения виртуальных миров.

РЕКУРСИВНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СИСТЕМЫ

Важным достижением на пути развития вычислительной техники стало развитие рекурсивных вычислительных систем с не-фон-Неймановской архитектурой, создание которых было провозглашено в 1974г на конгрессе ИФИП в Стокгольме [8] В результате большой работы в Ленинградском институте авиационного приборостроения к 1979г были изготовлены многие блоки машины и осенью 1979 г экспериментальный образец рекурсивной машины был предъявлен государственной комиссии во главе в академиком А.А.Дородницыным. В специальном Постановлении ГКНТ СССР и Комиссии Президиума Совета Министров СССР от 14.09Л979г за № 472/276 отмечалось, что запуск первого в мире экспериментального образца многопроцессорной рекурсивной машины высокой производительности и надежности является достижением мирового уровня

В математике существует большой раздел - рекурсивные функции [2]. Долгое время термин «рекурсия» употреблялся математиками, не будучи четко определенным. Его приблизительный интуитивный смысл можно описать следующим образом. Значение искомой функции Ф в произвольной точке X (од точкой подразумевается набор значений аргументов) определяется, вообще говоря, через значения этой же функции в других точках Н, которые в каком-то смысле предшествуют X. Само слово «рекурсия» означает возвращение [7,9]. Рекурсивные функции - это вычислимые функции. По сути дела все вычислимые на компьютерах функции - это рекурсивные функции, но разные компьютерные архитектуры поразному ведут вычислительные процессы. Чем лучше соответствует структура компьютера структуре задач, тем меньше затраты памяти и времени. Так что когда мы говорим о рекурсивных машинах, мы говорим о соответствии структур машины и задач, а так как задачи бывают разные, то структура машин должна гибко подстраиваться к структурам задач. Математика в настоящее время погружена в программирование, и в программировании рекурсивные операции распространены.

ЭВМ выступает как средство материализации логико-математических преобразований. ЭВМ являет собой иллюстрацию концепции потенциальной осуществимости, поскольку при отсутствии ограничений на время работы и емкость памяти любая ЭВМ в состоянии провести любые вычисления. Конкретное же протекание процессов вычисления проявляется лишь на уровне организации преобразований информации (задействуются конкретные регистры, коммутаторы, процессоры, линии передачи данных в определенном порядке и сочетании и т.д.). С этой точки зрения «архитектура ЭВМ» - это ее структура в состоянии (процессе) реализации алгоритма, то есть как бы ожившая структура, такого представления является возможность отображени категорий и явлений одной природы (числа, алгоритмы)

на объекты другой природы (физические элементы, сигналы). Причем это отображение взаимно неоднозначно - алгоритму aj может соответствовать множество архитектур {А} и обратно - архитектуре Aj непосредственно не соответствует какой-либо алгоритм aj. Специфика взаимодействия {а} и {А} раскрывает глубинные свойства процесса развития математики и вычислительной техники . Как отмечает

Перейти на страницу:

Похожие книги