Да! Ненавижу и вместе люблю. — Как возможно, ты спросишь?

Не объясню я. Но так чувствую, смертно томясь.

«…Все мы полны противоречий. Каждый из нас — просто мешанина несовместимых качеств. Учебник логики скажет вам, что абсурдно утверждать, будто желтый цвет имеет цилиндрическую форму, а благодарность тяжелее воздуха; но в той смеси абсурдов, которая составляет человеческое «Я», желтый цвет вполне может оказаться лошадью с тележкой, а благодарность — серединой будущей недели». Этот отрывок из романа английского писателя С. Моэма «Луна и грош» выражает сложность, а нередко и прямую противоречивость душевной жизни человека. «…Человек знает, что хорошо, но делает то, что плохо», — с горечью замечал Сократ.

Вывод из сказанного как будто ясен. Настаивая на исключении логических противоречий, не следует, однако, всякий раз «поверять алгеброй геометрию» и пытаться втиснуть все многообразие противоречий в прокрустово ложе логики.

Логические противоречия недопустимы в науке, но установить, что конкретная теория не содержит их, непросто. То, что в процессе развития и развертывания теории не встречено никаких противоречии, еще не означает, что их в самом деле нет. Научная теория — очень сложная система утверждений. Не всегда противоречие удается обнаружить относительно быстро путем последовательного выведения следствий из ее положений.

Вопрос о непротиворечивости становится яснее, когда теория допускает аксиоматическую формулировку, подобно геометрии Евклида или механике Ньютона. Для большинства аксиоматизированных теорий непротиворечивость доказывается без особого труда.

Есть, однако, теория, в случае которой десятилетия упорнейших усилий не дали ответа на вопрос, является она непротиворечивой или нет. Это математическая теория множеств, лежащая в основе всей математики.

<p>2. Закон исключенного третьего</p>

Рассказывают историю про одного владельца собаки, который очень гордился воспитанием своего любимца. На его команду: «Эй! Приди или не приходи!» — собака всегда либо приходила, либо нет. Так что команда в любом случае оказывалась выполненной.

Здесь мы сталкиваемся еще с одним популярным законом логики — законом исключенного третьего. Как и закон противоречия, он устанавливает связь между противоречащими друг другу утверждениями: из двух таких утверждений одно является истинным.

«А или не-А» — или дело обстоит так, как говорится в утверждении А, или так, как говорится в его отрицании. Третьей возможности нет. Человек говорит прозой или не говорит прозой, кто-то рыдает или не рыдает, собака выполняет команду или не выполняет и т. п. — других вариантов не существует. Мы можем не знать, противоречива некоторая конкретная теория или нет, но на основе закона исключенного третьего еще до начала исследования мы вправе заявить: она или непротиворечива, или противоречива.

Этот закон с иронией обыгрывается в художественной литературе. Причина иронии понятна: сказать «Нечто или есть, или его нет», значит, ровным счетом ничего не сказать. И смешно, если кто-то этого не знает. В комедии Мольера «Мещанин во дворянстве» есть такой диалог:

«Г-н Журден. …А теперь я должен открыть вам секрет. Я влюблен в одну великосветскую даму, и мне хотелось бы, чтобы вы помогли написать ей записочку, которую я собираюсь уронить к ее ногам.

Учитель философии. Конечно, вы хотите написать ей стихи?

Г-н Журден. Нет, нет, только не стихи.

Учитель философии. Вы предпочитаете прозу?

Г-н Журден. Нет, я не хочу ни прозы, ни стихов.

Учитель философии. Так нельзя: или то, или другое.

Г-н Журден. Почему?

Учитель философии. По той причине, сударь, что мы можем излагать свои мысли не иначе, как прозой или стихами.

Г-н Журден. Не иначе как прозой или стихами?

Учитель философии. Не иначе, сударь. Все, что не проза, то стихи, а что не стихи, то проза».

В известной сказке Л. Кэрролла «Алиса в Зазеркалье» Белый Рыцарь намерен спеть Алисе «очень, очень красивую песню»:

«— Когда я ее пою, все рыдают… или…

— Или что? — спросила Алиса, не понимая, почему Рыцарь вдруг остановился.

— Или… не рыдают…»

Перейти на страницу:

Похожие книги