Самый простой из всех логических законов — это, пожалуй,
Древнекитайский философ Конфуций поучал своего ученика: «То, что знаешь, считай, что знаешь, то, что не знаешь, считай, что не знаешь». Здесь не просто повторение одного и того же: знать что-либо и знать, что это знаешь, не одно и то же.
Закон тождества кажется в высшей степени простым и очевидным. Однако и его ухитрялись истолковывать неправильно. Заявлялось, например, будто этот закон утверждает, что вещи всегда остаются неизменными, тождественными самим себе. Это, конечно, недоразумение. Закон ничего не говорит об изменчивости или неизменности. Он утверждает только, что если вещь меняется, то она меняется, а если она остается одной и той же, то она остается той же.
Законы контрапозиции говорят о перемене позиций высказываний с помощью отрицания:
— из условного высказывания «Если первое, то второе» вытекает высказывание «Если не второе, то не первое», и наоборот;
— из «Если первое, то не второе» вытекает «Если второе, то не первое»;
— из «Если не первое, то второе» следует «Если не второе, то первое».
Например, из «Если сверкает молния, то гремит гром» следует «Если нет грома, нет и молнии»; из «Если нет причины, нет и следствия» вытекает «Если есть следствие, есть также причина» и т. п.
Контрапозиция — это, выражаясь шахматным языком, рокировка высказываний. Редкая шахматная партия обходится без рокировки и редкое наше рассуждение проходит без использования контрапозиции.
Два закона, известные еще с глубокой древности, — это так называемые «модус поненс» и «модус толленс». Первый из них позволяет от утверждения условной связи и утверждения ее основания перейти к утверждению ее следствия. Второй говорит, что если следствие правильной условной связи неверно, то неверным является и ее основание. Например, если справедливо, что в случае дождя земля обязательно мокрая, и верно, что идет дождь, то верно, что земля мокрая. Если же верно, что в дождь земля всегда мокрая, а она не является мокрой, то это означает, что дождь не идет.
Шерлок Холмс однажды заметил: «Отбросьте все невозможное, и то, что останется, будет ответом». Имеется в виду закон: «или первое, или второе, или третье; но первое неверно и второе неверно; следовательно, третье».
Еще один логический закон говорит об ошибочных следствиях: «Если первое, то второе или третье, но второе неверно и третье неверно; значит, неверно и первое».
Вот рассуждение, своеобразно комбинирующее два последних закона.
Когда-то халиф Омар вознамерился сжечь богатейшую Александрийскую библиотеку. На просьбу сохранить ее этот религиозный фанатик, сам учившийся на ее книгах, ехидно отвечал, что книги библиотеки либо согласуются с Кораном, либо нет; если они согласуются с Кораном, они излишни и должны быть сожжены; если они не согласуются с Кораном, они вредны и поэтому также должны быть сожжены; следовательно, книги библиотеки в любом случае должны быть сожжены.
Это рассуждение опирается, конечно, на ложную предпосылку. Оно показывает, что фанатик тоже способен быть иногда логичным.
Закон, носящий имя средневекового логика и философа монаха Дунса Скота, характеризует ложное высказывание. Смысл этого закона можно приблизительно передать так: из ложного утверждения высказывания следует какое угодно утверждение. Применительно к конкретным утверждениям это звучит так: если дважды два равно четыре, то если это не так, вся математика ничего не стоит. В подобного рода рассуждениях есть несомненный привкус парадоксальности. Особенно заметным он становится, когда в качестве заключения берется явно ложное и совершенно не связанное с посылками высказывание. Например: если дважды два равно четыре, то если это не так, Луна сделана из зеленого сыра. Явный парадокс! Не все описания логического следования принимают данный закон в качестве правомерного способа рассуждения. Построены, хотя только сравнительно недавно, такие теории логических связей, в которых этот и подобные ему способы рассуждения считаются недопустимыми.
Известен анекдот о Расселе, доказавшем своему собеседнику на каком-то вечере, что из того, что два плюс два равно пяти, вытекает, что он, Рассел, — римский папа. В доказательстве использовался закон Дунса Скота.
Отнимем от обеих сторон равенства 2+2=5 по 3. Получим 1=2. Если собеседник утверждает, что Рассел не является римским папой, то этот папа и Рассел — два разных лица. Но поскольку 1=2, папа и Рассел — это одно и то же лицо.