Одним из показателей растущей важности тщательного помышления о будущем для животных является возрастающая важность интернейронов у более крупных и сложных животных. У червя вида Caenorhabditis elegans всего 302 нейрона, более или менее поровну распределенных между сенсорными нейронами, двигательными нейронами и интернейронами112. Но по мере развития более изощренных нервных систем пропорция интернейронов возрастает, все больше и больше их оказывается в том особом вычислительном органе, который мы называем мозгом. Основная задача мозга – обдумывать и моделировать вероятное будущее с соблюдением правильного баланса между точностью и универсальностью. Как выразилась философ Патрисия Черчленд, «предсказание… есть конечная и наиболее распространенная функция мозга»113.
Древнейшие признаки наличия простых нервных систем выявлены для эпохи приблизительно шестьсот миллионов лет назад, в период эдиакария [49], когда на планете появились первые животные. С тех пор сами нейроны изменились не сильно, зато вычислительная мощность нервных систем увеличилась на несколько порядков вследствие интеграции все большего количества нейронов во все более сложные сети.
У простейших животных вроде губок нет нейронов или нервной системы. Им это не нужно, поскольку они, как и растения, большую часть своей жизни проводят в неподвижности. У кишечнополостных (медузы) нейроны имеются, но обычно организованы в сети без центрального узла114. Впрочем, у некоторых – та же гидра – нейроны собираются в кольца рядом с важными областями (рот или щупальца), возле которых многое происходит.
Более сложные нервные системы развились у билатеральных животных, у которых есть передняя и задняя, верхняя и нижняя, а также левая и правая стороны – и мозг. Сегодня билатерии составляют большинство животных видов, включая червей и рыб, омаров и насекомых, крокодилов и людей115. Даже у плоских червей обнаруживаются нейроны в пучках (ганглиях) в передней части тела, которой организм обыкновенно встречает все новое. Многие виды беспозвоночных обладают несколькими ганглиями, управляющими разными частями тела. У осьминогов – пожалуй, наиболее разумных беспозвоночных – большая часть нейронов находится в щупальцах. Членистоногие, обширная группа животных, в которую входят насекомые и ракообразные, имеют многораздельный мозг, образованный слиянием двух, а иногда и трех лобных ганглиев. Преимущественно те управляют глазами, усиками/антеннами и ртом.
Нервная система и мозг наиболее экстравагантно развивались у позвоночных или у животных со спинным мозгом. Самый простой способ оценить эти изменения – подсчитать количество нейронов у современных видов. Как уже говорилось, в нервной системе червя Caenorhabditis elegans всего 302 нейрона – настолько мало, что исследователи сумели установить и описать все связи между ними. У морского слизняка Aplysia около двадцати тысяч нейронов. У мухи дрозофилы в мозгу около двухсот тысяч нейронов, а у медоносных пчел, которые относятся к числу наиболее «мозговитых» насекомых, уже около миллиона. У осьминогов может быть до 550 миллионов нейронов116. Млекопитающих характеризует крупный мозг, а в а человеческом мозгу может содержаться до ста миллиардов нейронов, между которыми возможно до тысячи триллионов связей. Каждый нейрон способен посылать до пятидесяти сигналов в секунду, а это означает, что человеческий мозг может выполнять около 1015 логических операций в секунду117.
Крупные мозги преуспевают в детальном моделировании текущих реалий и возможного будущего. Мягкий клубок нейронов между ушами измученной жаждой молодой антилопы может превратить миллионы сигналов, генерируемых на пути к водопою, в движущееся трехмерное виртуальное изображение с благоухающими травами, что шевелятся на ветру, жужжащими насекомыми и множеством других антилоп; не будем забывать и о запахе львиного прайда, сторожащего водопой. Проклятие! Конечно, не все эти вычисления происходят в мозгу. Многие из них выполняются в нейронных сетях, что тянутся вниз по позвоночнику и по всему телу, вот почему антилопа всегда готова сорваться с места.