В 1965 году советский физик Андрей Михайлович (на самом деле Герш Ицкович) Будкер предложил новый и, как показала практика, очень эффективный способ фокусировки пучка. На тот момент Будкер возглавлял созданный в 1958 году Институт ядерной физики в Академгородке Новосибирска и руководил разработкой ВЭПП-2 – одного из ранних электрон-позитронных коллайдеров. В институте уже был электрон-электронный коллайдер ВЭП-1, запущенный в 1962-м и до сих пор остающийся единственным за всю историю вертикальным устройством такого типа.
Когда пучок заряженных частиц движется в ускорителе, у частиц есть не только продольная скорость, но и поперечная, вызванная тепловым движением. Чем выше температура частиц, тем выше поперечная скорость, и в результате пучок постепенно расплывается в поперечном направлении. Чтобы сфокусировать пучок, нужно его в буквальном смысле охладить, то есть заставить частицы отдать тепловую энергию.
Для лёгких частиц, таких как электроны, эта операция относительно проста. Когда электроны движутся в циклическом ускорителе, они испускают синхротронное излучение, быстро теряя энергию и, соответственно, охлаждаясь. При охлаждении их поперечные скорости уменьшаются, пучок перестаёт расплываться и фокусируется. С ионами провернуть такое гораздо сложнее: они в тысячи раз тяжелее электронов и начинают генерировать синхротронное излучение при энергиях в десятки тераэлектронвольт (для сравнения: максимальная энергия одного пучка в Большом адронном коллайдере – 7 ТэВ, а в 1960-х о таком можно было только мечтать). Будкер предложил искусственно охлаждать пучки ионов, в буквальном смысле «смешивая» их с уже охлаждёнными и разогнанными до тех же продольных скоростей электронами на определённом участке траектории. Ионы при этом взаимодействуют с электронами посредством электромагнитных сил, отдавая им энергию и в свою очередь охлаждаясь.
Для проверки идеи к 1971 году в институтских мастерских была построена специальная установка. Всё оказалось не очень просто: команда, работавшая над ускорителем-охладителем, на протяжении ещё трёх лет не могла получить сколько-нибудь приемлемых результатов (и, кстати, над учёными висел дамоклов меч – за эти годы они не сделали ни одной публикации). Но в 1974 году был наконец построен функциональный накопитель НАП-М, на котором получили первый практический результат. Сердцем устройства стала ЭПОХА (установка с
К сожалению, Герш Будкер этого уже не застал – он скончался в 1977 году. Техника электронного охлаждения сегодня используется во многих лабораториях мира. Более того, с её помощью научились не только фокусировать пучок, уменьшая разброс частиц, но с высокой точностью варьировать его профиль. Электронные охладители для многих зарубежных лабораторий (и, кстати, для Большого адронного коллайдера) разрабатывали советские и позже российские учёные – первопроходцы технологии. Например, недавно установленный в исследовательском центре COSY (Юлих, Германия) охладитель строили по немецкому заказу в Институте ядерной физики СО РАН.
Однако в этой истории о нашем первенстве есть и своя ложка дёгтя: в той же Германии сегодня действуют четыре установки электронного охлаждения ионов, а в России – ни одной. Другое дело, что, пока я пишу эти строки, в Дубне строится новый ускорительный комплекс NICA (
История третья: квантовые точки
В последнее время набирает обороты технология QLED – мониторы и телевизоры на квантовых точках. Многие полагают, что это новинка 2010-х, в то время как квантовые точки были то ли открыты, то ли изобретены – тут точно не скажешь – советскими физиками Алексеем Екимовым и Алексеем Онущенко в далёком 1981 году.
Вообще говоря, квантовая точка – это крошечный фрагмент проводника или полупроводника. Независимо от того, что является в нём носителем заряда – электроны или дырки, они ограничены по всем трём измерениям, то есть, по сути, это крошечный кубик. Размер его должен быть настолько мал, чтобы начали проявляться квантовые эффекты.
Проще всего объяснить на примере. При переходе электрона на более низкий энергетический уровень испускается фотон. Чем меньше кристалл полупроводника (то есть квантовая точка), тем больше расстояние между его энергетическими уровнями, и, варьируя размеры кристалла, мы можем изменять энергию испускаемого фотона, то есть его цвет! Иначе говоря, квантовая точка способна излучать свет любой видимой части спектра в зависимости от своих размеров. Размеры квантовой точки, называемой также искусственным атомом (поскольку она ведёт себя очень похоже), колеблются от нескольких единиц до сотни нанометров.