Завершая эту тему, отметим, что засорение околоземного пространства космическим мусором вызывает все большую озабоченность. Считается, что вероятность утраты спутника, запущенного на замусоренную орбиту, составляет порядка 5 % за всю продолжительность его службы. Это еще приемлемо, но пренебрегать этим уже нельзя. Беда в том, что каждый удар, каждое столкновение увеличивают количество обломков, из-за чего через несколько десятилетий возросшая опасность потери спутников заставит вообще отказаться от их запуска. Растущее количество космического мусора — реальная проблема, и космические агентства начинают закладывать в свои расчеты «загрязнение космической среды», хотя до «уборки» в космосе дело еще не дошло…

<p>Невесомость и гравитация</p>

Странно, что фильм назвали «Гравитация», ведь почти все его действие происходит в невесомости при вроде бы полностью отсутствующей силе тяжести. Думаете, космонавты на МКС парят совершенно свободно ввиду нулевого тяготения? Ничего подобного. Притяжение Земли остается ощутимым на любом удалении от ее центра, хотя и ослабевает в зависимости от расстояния. МКС обращается на высоте примерно 400 км, что в 50 раз выше самой высокой горы, но составляет всего лишь 1/16 земного радиуса. На этой высоте сила тяжести всего на 12 % слабее, чем на поверхности Земли. Но раз гравитация в космосе не исчезает, то как объяснить свободное парение астронавтов, словно на них не действует тяготение?

Чтобы понять происхождение невесомости, вспомним для начала, что испытать ее можно, даже не поднимаясь на орбиту Земли: достаточно погрузиться в «Аэробус А300 Zero-G» компании Novespace[14]. Этот самолет, специально оборудованный для научных экспериментов, описывает параболические траектории, позволяющие каждому испытать свободное падение продолжительностью в два десятка секунд. Пассажиры, свободно парящие в салоне, испытывают на себе то, что составляло сущность мысленного эксперимента Эйнштейна в 1907 году. В ходе работы над проблемой гравитации его посетила «счастливейшая во всей (его) жизни» идея: он заметил, что «гравитация имеет только относительное существование <…> Для наблюдателя в состоянии свободного падения… никакого гравитационного поля не существует». Эта идея опирается на тот факт — экспериментально подтвержденный с высокой точностью спутником «Микроскоп» в 2017 году, — что в гравитационном поле все тела падают одинаково, независимо от их массы и состава. Знаменитый мысленный эксперимент Галилея (возможно, апокрифический) со свободным падением тел с высоты Пизанской башни именно это и демонстрирует. Брошенные с одинаковой высоты и без замаха большое каменное ядро и легкий деревянный шар того же размера достигают земли одновременно. Дэвид Скотт, астронавт «Аполлона-15», повторил этот эксперимент на Луне, где отсутствует атмосфера, мешающая движению. Перед работающей камерой соколиное перо (кстати, посадочный модуль назывался «Фэлкон» — «сокол») и геологический молоток коснулись лунной поверхности одновременно.

На орбите ситуация такая же, как на борту «Аэробуса Zero-G»: астронавты тоже испытывают состояние свободного падения! А поскольку все тела падают одинаково, то астронавты наблюдают их как относительно неподвижные, свободно парящие по станции относительно них самих. Единственная разница (зато какая!) заключается в том, что на орбитальной станции свободное падение происходит постоянно. От падения на Землю их спасает высокая скорость (у МКС она равна 28 тыс. км/ч): они несутся к Земле, но никак на нее не упадут, потому что все время промахиваются! Если бы не земное притяжение, оставаться вблизи Земли было бы затруднительно, так как инерция заставляла бы их продолжать движение по прямой с постоянной скоростью, удаляясь от нашей планеты. Изгибая траекторию полета станции вместе с пассажирами, земное притяжение делает ее почти кольцевой.

<p>Реактивное кресло</p>

В начале фильма командир корабля Ковальски снует вокруг челнока «Эксплорер» и космического телескопа в особом кресле. Это точь-в-точь знаменитый MMU, пилотируемый маневренный модуль — разработка НАСА для автономного передвижения астронавтов при выходе в открытый космос. MMU крепится на спине скафандра. Маневрирование обеспечивается за счет суммарной тяги 24 сопел, выбрасывающих жидкий азот. MMU использовался в трех полетах американского космического челнока в 1984 году, после чего был забракован, так как его сочли слишком опасным для астронавтов. Затем была создана менее мощная модель SAFER (упрощенный спасательный модуль для внекорабельной деятельности), которая используется теперь при всех выходах астронавтов МКС в открытый космос для случаев непредвиденного удаления от борта.

Перейти на страницу:

Похожие книги