Все аминоацил-тРНКсинтетазы произошли от двух предковых форм, и объединены на основе структурного сходства в два класса. Эти классы отличаются по доменной организации, структуре главного (амино-ацилирующего) домена, способу связывания и аминоацилирования тРНК. Аминоацилирующий домен аминоацил-тРНК синтетаз 1-го класса образован так называемой укладкой Россмана, в основе которой лежит параллельный -лист. Ферменты 1-го класса являются в большинстве случаев мономерами. 76-й аденозин тРНК они аминоацилируют по 2» -ОН группе. Ферменты 2-го класса имеют в основе структуры аминоацилирующего домена антипараллельный -лист. Как правило, они являются димерами, то есть имеют четвертичную структуру. За исключением фенилаланил-тРНКсинтетазы все они аминоацилируют 76-й аденозин тРНК по 3» -ОН группе. Каждый класс дополнительно делится на 3 подкласса – a, b и c по структурному сходству…
Глобула аминоацил-тРНК-синтетазы состоит из двух основных доменов – аминоацилирующего, в котором располагается активный центр и происходят реакции, и антикодон-связывающего, узнающего последовательность антикодона тРНК…»
Этот довольно пространный отрывок дает только самое общее впечатление о сложности структуры и функции АРСаз. Помимо основных описанных функций, они выполняют в клетке и другие, называемые неканоническими; мы касаться их не будем.
И все же функция упомянутого выше антикодон-связывающего домена не является абсолютным условием аминоацилирования тРНК. Нина Энтелис в связи с этим отмечает, что «для аланиновой АРСазы, например, основным элементом узнавания служит неканоническая пара G-U в аминоакцепторном стебле. При замене этой пары на G-C, A-U и даже на U-G аланиновая тРНК теряет способность аминоацилироваться аланином. Если же в любой другой тРНК заменить третью пару аминоакцепторного стебля на G-U, то эта тРНК приобретает сродство к аланиновой АРСазе и способность присоединять аланин. Таким образом, для распознавания своей тРНК аланиновой АРСазе (и она не исключение) достаточно небольшого участка аминоакцепторного стебля». У сериновой и лейциновой АРСаз E. coli антикодон также не участвует во взаимной рекогниции. Это, в частности, значит, что изменение антикодона в таких случаях – а иногда и в других, когда даже весь антикодон участвует в узнавании своей АРСазой, – не сможет повлиять на исходную специфичность аминокислоты – разве что сделает ее несколько менее эффективной.
Стоит еще раз упомянуть две особенности АРСаз. Во-первых, это очень различные в структурном отношении белковые молекулы, преимущественно классифицированные только по узнаваемому субстрату. Во-вторых, они обладают столь высокой специфичностью, что для ее характеристики даже используется особый термин – сверхспецифичность. Это свойство, отмечает Ольга Лаврик, тем более уникально, что «задачу специфичности АРСазы решают дважды: на стадии активации аминокислоты и на стадии взаимодействия с тРНК». И это при скорости роста полипептидной цепи в 20 аминокислот в секунду (для прокариот; у эукариот эта скорость на порядок меньше).
А теперь – имея в виду все, о чем мы только что рассказали, – отметим следующие два обстоятельства: