Из некоторых новых работ, которые впервые пришлось осваивать именно токарю-лекальщику, я хочу отметить создание калибрового хозяйства для конической резьбы Бриггса. Эти калибры на первый взгляд представлялись настолько сложными, что даже ученые не смогли сказать, как же их сделать? А решил эту проблему токарь-лекальщик с московского машиностроительного завода «Знамя труда». По калибрам, им изготовленным, механические цехи стали делать новые штуцера с конусной наружной и внутренней резьбой для трубопроводов, связывающих гидравлические системы самолетов.

Другая немаловажная задача была решена также токарем-лекальщиком при освоении нового вида подшипников для некоторых типов самолетов. Так называемые сферические подшипники скольжения имеют целый ряд преимуществ перед известными шариковыми и роликовыми. Они раз в пять легче и имеют необычайно плавный ход при вращении. Поэтому они сразу привлекли внимание самолетостроителей. Однако осваивать первые партии этих подшипников опять поручили токарю-лекальщику. Малые допуски на кривизну наружных и внутренних сферических сопрягаемых поверхностей, очень малая допустимая шероховатость — все это требовало специальных знаний, технологической выдумки и высокой культуры работы. Токарь-лекальщик разработал технологический процесс, изготовил первые партии новых подшипников, обучил других токарей и только тогда было практически налажено производство необходимых заводу подшипников.

В пятидесятых годах мне пришлось решить еще одну задачу, которая, видимо, в какой-то мере облегчила работу самолетостроителей-сборщиков. Однажды меня пригласил к себе начальник Центральной измерительной лаборатории завода Виктор Николаевич Фалеев и сказал:

— Есть одна серьезная проблема, может быть тебе удастся что-нибудь придумать!

А заключалась она в следующем: все плоскости самолета (крылья, хвостовое оперение и т. д.) проверяют по нивелирам. По существовавшим нормативам одна плоскость, скажем хвостового оперения самолета, может быть выше другой плоскости на 40 миллиметров. Таков допуск на изготовление. С точки зрения токаря это была огромная величина, так как я уже привык к допускам в 2—3 микрометра. Однако при изготовлении самолета «поймать» эти 40 миллиметров тогда было нелегко.

Для того чтобы увидеть в нивелир отклонение в 40 миллиметров, надо его уровень устанавливать с точностью до 10 секунд, а нивелиры имели уровни с точностью всего лишь 40 секунд. Она была вполне достаточна для землемерных работ и при строительстве зданий. Но на заводе ведь делали самолеты! Задача была ясна. Надо сделать нивелиры, пригодные для проверки плоскостей самолета. Я был несколько удивлен, когда Виктор Николаевич Фалеев обратился ко мне с таким вопросом, ведь я токарь и в оптике не силен.

Но Виктор Николаевич настойчиво и терпеливо разъяснял мне принцип работы нивелира. В конце концов я понял, что точность его зависит от стабильности показаний уровня. При повороте оптической трубы нивелира воздушный пузырек уровня должен стоять на месте. Малейшее отклонение этого пузырька от горизонта хорошо видно через оптические призмы, увеличивающие изображение в несколько раз.

При работе с нивелиром складывалась картина, схематически изображенная на рис. 16. Установив нивелир 1 по уровню правильно (в поз. 2 виден пузырек уровня через оптические призмы), сборщик нацеливает оптический крест нивелира на правую плоскость самолета. Потом он поворачивает трубу нивелира на левую плоскость и смотрит, насколько она не совпадает с оптическим крестом. Казалось бы, все просто. Но не тут-то было. При незначительном повороте трубы уровень обязательно смещался на величину а (поз. 3). Величина а и есть те 40 секунд, на которые наклонилась или поднялась оптическая труба при повороте. Отклонение в 40 секунд для трубы длиной 300 миллиметров величина, конечно, очень маленькая. Однако если оптическую ось трубы продолжить на 50—60 метров, т. е. на то расстояние, с которого ведется проверка плоскостей самолета, то ошибка уже будет 100 миллиметров. Получается, что сборщик должен поймать нивелиром допуск в разнице между плоскостями 40 миллиметров, а сам нивелир у него ошибается на 100 мм. Никакой проверки не получалось. Отчего же происходит такая нестабильность положения оптической оси при повороте трубы?

Рис. 16. Установка нивелира для проверки плоскостей самолета

После долгих поисков и размышлений мы установили, что дело тут не в оптике, а в механическом соединении вертикальной оси, на которой вращается труба, и основания (так называемой баксы), на котором покоится эта ось. На рис. 17 показана схема основания нивелира. Как бы ни был идеально притерт конус оси 2 с баксой 3, при повороте он неизбежно наклонит или поднимет трубу 1 на микроскопическую величину 40 секунд. А этого уже достаточно, чтобы ошибиться при проверке плоскостей на 100 миллиметров.

Перейти на страницу:

Поиск

Похожие книги