Чувствительность метода должна была стать абсолютно фантастической. Специально для этих экспериментов была введена специальная единица –
Теория предсказывала, что с учетом конкретной массы вещества в хлорном детекторе и небольшого фона, все-таки создаваемого космическими лучами (частицами несолнечного происхождения), изредка должны регистрироваться реакции поглощения солнечных нейтрино хлором, соответствующие примерно восьми
Поток солнечных нейтрино был обнаружен! Это подтверждало теорию ядерного синтеза: другие способы производства нейтрино в недрах Солнца неизвестны. Но расхождение с теорией вызывало подозрение: что-то неладно либо в методике эксперимента, либо в теории.
Еще один важный принцип в науке – это воспроизводимость результата. Если эффект существует, он должен фиксироваться и на других установках.
Теория допускала взаимодействие потока нейтрино не только с атомами хлора. Советский физик Вадим Алексеевич Кузьмин (1937–2015) предложил новый тип эксперимента на основе захвата нейтрино ядрами атомов галлия. В результате галлий должен превращаться в радиоактивный германий с периодом полураспада 11,4 суток. Согласно теории, для регистрации одного захвата нейтрино в сутки было достаточно существенно меньшей массы детектора – 20 тонн галлия.
Советский (через год ставший российским) детектор, готовившийся совместно с США, заработал в 1990 году. Резервуар с 57 тоннами галлия был размещен в глубине горы на Баксанской нейтринной обсерватории Института ядерных исследований РАН в Баксанском ущелье на Северном Кавказе (эксперимент
В 1991 году в Гран Сассо в Итальянских Альпах был дан старт второму проекту со схожей методикой (итало-немецкий эксперимент
Исследования продолжались. В шахте Камиока (Японские Альпы) на глубине 1000 метров был размещен водный детектор Камиоканде-II. Идея эксперимента на этот раз сводилась к использованию 680 тонн воды в качестве рабочего вещества. Согласно теории, нейтрино иногда должны взаимодействовать с электронами атомов в молекулах воды. В результате рассеяния отдельных частиц в недрах детектора в полной темноте должны возникать вспышки света так называемого
Модернизированный эксперимент «Супер-Камиоканде» позволил не только фиксировать отдельные взаимодействия нейтрино с веществом детектора, но даже впервые построить размытое «нейтринное» изображение Солнца. Поток нейтрино от Солнца уверенно регистрировался во всех экспериментах. Это означало, что термоядерные реакции в недрах Солнца, безусловно, идут! Но проблема оставалась серьезной: количество нейтрино было меньше, чем предсказывала теория. При этом в разных экспериментах расхождения с расчетами были различными (в два, три, четыре раза).
Конечно, разные установки фиксировали немного разные нейтрино – частицы с различными энергиями. Конечно, всегда оставалось сомнение, насколько корректно проведена обработка данных, насколько правильно работает установка, насколько учтены все инструментальные эффекты, – эксперимент был немыслимо сложным! Методика совершенствовалась, расхождения постепенно уменьшались, но оставались значимыми.
Исследователи постепенно склонялись к мысли, что дело не в погрешностях теории ядерного синтеза на Солнце, а в недостатках наших представлений о том, что такое сами нейтрино!
И действительно, низкая способность нейтрино к взаимодействию с веществом существенно осложняла, осложняет и будет осложнять исследование этих частиц. Некоторые основные свойства нейтрино были вообще неизвестны. Например, согласно первоначальным вариантам теории, нейтрино вообще не обладают массой, и в этом смысле они казались похожими на частицы света – фотоны – и должны передвигаться со скоростью света. Постепенно накапливались основания для подозрений, что масса у нейтрино все-таки есть, но очень маленькая, существенно меньше, чем, например, у электрона. Но тогда теория допускала, что могут существовать нейтрино нескольких «сортов»!