Строки 57–67 обрабатывают определения, создавая соответствующим образом safe_read() и safe_write() (см. ниже safe_write.c).

Строки 77–84 указывают на разновидность осложнений, возникающих при чтении. Здесь один особый вариант Unix не может обработать значения, превышающие INT_MAX, поэтому строки 83–84 выполняют сразу две операции: уменьшают значение числа, чтобы оно не превышало INT_MAX, и сохраняют его кратным 8192. Последняя операция служит эффективности дисковых операций: выполнение ввода/вывода с кратным основному размеру дискового блока объемом данных более эффективно, чем со случайными размерами данных. Как отмечено в комментарии, код сохраняет семантику read() и write(), где возвращенное число байтов может быть меньше затребованного.

Обратите внимание, что параметр count может и в самом деле быть больше INT_MAX, поскольку count представляет тип size_t, который является беззнаковым (unsigned). INT_MAX является чистым int, который на всех современных системах является знаковым.

Строки 86–90 представляют действительный цикл, повторно осуществляющий операцию, пока она завершается ошибкой EINTR. Макрос IS_EINTR() не показан, но он обрабатывает случай в системах, на которых EINTR не определен. (Должен быть по крайней мере один такой случай, иначе код не будет возиться с установкой макроса; возможно, это было сделано для эмуляции Unix или POSIX в не-Unix системе.) Вот safe_write.c:

1  /* Интерфейс write для повторного запуска после прерываний.

2     Copyright (С) 2002 Free Software Foundation, Inc.

   /* ...куча шаблонного материала опущена... */

17

18 #define SAFE_WRITE

19 #include "safe-read.с"

В строке 18 #define определяет SAFE_WRITE; это связано со строками 57–60 в safe_read.с.

<p>10.4.4.2. Только GLIBC: <code>TEMP_FAILURE_RETRY()</code></p>

Файл GLIBC определяет макрос TEMP_FAILURE_RETRY(), который вы можете использовать для инкапсулирования любого системного вызова, который может при неудачном вызове установить errno в EINTR. Его «объявление» следующее:

#include /* GLIBC */

long int TEMP_FAILURE_RETRY(expression);

Вот определение макроса:

/* Оценить EXPRESSION и повторять, пока оно возвращает -1 с 'errno',

    установленным в EINTR. */

# define TEMP_FAILURE_RETRY(expression) \

 (__extension__ \

  ({ long int __result; \

   do __result = (long int)(expression); \

   while (__result == -1L && errno == EINTR); \

   __result; }))

Макрос использует расширение GCC к языку С (как обозначено ключевым словом __extension__), которое допускает заключенным в фигурные скобки внутри обычных скобок выражениям возвращать значение, действуя таким образом подобно простому выражению.

Используя этот макрос, мы могли бы переписать safe_read() следующим образом:

size_t safe_read(int fd, void const *buf, size_t count) {

 ssize_t result;

 /* Ограничить count, как в ранее приведенном комментарии. */

 if (count > INT_MAX)

  count = INT_MAX & ~8191;

 result = TEMP_FAILURE_RETRY(read(fd, buf, count));

 return (size_t)result;

}

<p>10.4.5. Состояния гонок и <code>sig_atomic_t</code> (ISO C)</p>

Пока обработка одного сигнала за раз выглядит просто: установка обработчика сигнала в main() и (не обязательная) переустановка самого себя обработчиком сигнала (или установка действия SIG_IGN) в качестве первого действия обработчика.

Но что произойдет, если возникнут два идентичных сигнала, один за другим? В частности, что, если ваша система восстановит действие по умолчанию для вашего сигнала, а второй сигнал появится после вызова обработчика, но до того, как он себя восстановит?

Или предположим, что вы используете bsd_signal(), так что обработчик остается установленным, но второй сигнал отличается от первого? Обычно обработчику первого сигнала нужно завершить свою работу до того, как запускается второй, а каждый обработчик сигнала не должен временно игнорировать все прочие возможные сигналы!

Перейти на страницу:

Похожие книги