На рисунке изображен египетский канон, описанный у Диодора. Высота фигуры разделена точно на 21 — части, причем одно целое деление соответствует длине среднего пальца. Высота фигуры без головного убора составляет 19 частей. Рядом расположена греческая скульптура Аполлона Тенейского, относящаяся к середине VI века до н. э.- так называемому архаическому (от греч. "архайос" — древний) периоду греческого искусства. Точное совпадение пропорций этих двух фигур является математическим доказательством достаточно очевидной истины: греческое искусство периода архаики взросло на почве древнеегипетского искусства. Конечно, художественные образы этих фигур совершенно различны. Аполлон Тенейский, юноша-атлет (курос), светится жизнью и радостью: еще мгновение — и он сойдет с места навстречу новому искусству Эллады. Однако его пропорции- "математика Аполлона" — полностью сохраняют влияние древнеегипетского канона.
Греческое искусство развивалось очень динамично. Уже через 100 лет после Аполлона Тенейского, в середине V века до н. э., греческая цивилизация достигает своего апогея. Наступает период наивысшего расцвета искусства Древней Греции, именуемый периодом высокой классики. Возвышенные идеалы классики, вера в духовное, нравственное и физическое совершенство свободного эллина нашли отражение в скульптурах Поликлета, творившего во второй половине V века. Поликлет был не только гениальным скульптором, автором "Дорифора", "Дуадумена" и "Раненой амазонки", но и выдающимся теоретиком искусства.
Свои теоретические воззрения о пропорциях человека Поликлет изложил в трактате "Канон". Трактат этот, увы, не сохранился. Но как бы предчувствуя бренность написанного и бессмертие изваянного, Поликлет создает статую, в которой в бронзе воплощает свои теоретические воззрения. (Статуя эта также не сохранилась, но, к счастью, сохранилась ее римская мраморная копия.) Вот почему прославленная статуя юноши-копьеносца "Дорифор" имеет также и другое название — "Канон".
К сожалению, мы опять-таки не знаем, в каких конкретных математических отношениях выражался канон Поликлета. Но знание философских воззрений Поликлета, а главное — его скульптура помогают восстановить эти отношения. Поликлет был пифагорейцем, следовательно, он был неплохим математиком и, безусловно, был знаком с золотой пропорцией, которую пифагорейцы считали верхом совершенства. Можно только догадываться, какое изумление и радость испытал пифагореец Поликлет, когда обнаружил, что золотая пропорция присуща не только абстрактной геометрической фигуре, главному пифагорейскому символу — пятиконечной звезде, но и естественным образом входит в пропорции человека. Человеческое тело оказалось благодатным материалом для философа-пифагорейца: как нам известно, золотая пропорция пронизывает тело человека от малых размеров (три фаланги среднего пальца) до самых больших (см. с. 214). Анализ пропорций "Дорифора" и других скульптур Поликлета подтверждает наши предположения: в скульптурах Поликлета с большой точностью выдержаны пропорции ряда золотого сечения (см. с. 207)
1, φ, φ2, φ3, φ4, φ5, φ6.
Заметим, что в самом методе построения пропорций Поликлета есть принципиальное отличие от метода пропорционирования египтян. Египтяне исходили из какой-то условной единицы измерения, например длины среднего пальца, которую затем целое число раз "укладывали" в ту или иную часть изображения человека. Поликлет же рост человека принимает за единицу, затем фиксирует определенную часть тела, какова бы она ни была по размерам, и находит их отношение. Такое отношение могло выражаться не только отношением целых чисел, как у египтян, но и быть иррациональным числом, как в случае золотого сечения.
Таким образом, открытие золотой пропорции в строении человека, которое, по-видимому, принадлежит Поликлету, можно считать вслед за открытием закона целочисленных отношений в музыке вторым важнейшим событием в "математической теории искусств".
Рисунок Леонардо да Винчи из анатомических рукописей, связавший совершенные геометрические фигуры с пропорциями человека, стал своеобразным символом синтеза математики и искусства