Как происходило дальнейшее развитие теории перспективы? Уже наше короткое знакомство с перспективой убеждает в том, что по перспективному изображению весьма трудно судить об истинных размерах предмета. Желая преодолеть эту трудность, математик и архитектор из Лиона Жерар Дезарг (1593-1662) в работе "Общий метод изображения предметов в перспективе" предложил использовать при построении перспективы метод координат. Изображение предмета предлагалось выполнять совместно с системой координат, относительно которой он ориентирован в пространстве. Метод Дезарга положил начало новому самостоятельному методу изображения, впоследствии названному аксонометрическим.
Дезарг обратил внимание и на другую особенность, возникающую при построении перспективы. Как мы видели, при центральном проектировании прямые, параллельные в горизонтальной плоскости Т, могут переходить в пересекающиеся прямые в картинной плоскости К (см. на с. 281). При этом точка схода параллельных прямых в картинной плоскости (точка О на рисунке) не имеет своего прообраза в плоскости Т. Желая избавиться от тацой особенности, Дезарг предложил дополнить обычную евклидову плоскость (плоскость с конечными точками)
Далее Дезарг предложил стереть различия между собственными и несобственными элементами расширенной плоскости. Это значительно упрощало и обобщало многие рассуждения. В самом деле, в таком случае на расширенной плоскости исчезало само понятие параллельности прямых, так как параллельные прямые можно было считать пересекающимися в бесконечно удаленной точке. Но тогда автоматически устранялась и та особенность центрального проектирования, с которой все и началось: на расширенной плоскости пересекающиеся прямые (в том числе и пересекающиеся в несобственной точке, т. е. параллельные) проектировались в пересекающиеся. Таким образом, на расширенной плоскости центральные проекции дополнялись еще одним инвариантом (см. с. 275) — свойством прямых пересекаться.
Дюрер. Устройство для изображения предметов в перспективе. Гравюра. Ок. 1520
Поведение точек и прямых на расширенной плоскости управлялось лишь двумя аксиомами:
1) две различные точки на расширенной плоскости определяют прямую, и притом только одну, которой они принадлежат;
2) две различные прямые на расширенной плоскости определяют точку, и притом только одну, через которую они проходят.
Нет параллельных прямых! Нет знаменитого пятого постулата Евклида, который 2000 лет не давал покоя математикам! Геометрия расширенной плоскости — это геометрия точек, прямых и пересечений. Любая теорема о конфигурации этих элементов на расширенной плоскости оставалась справедливой и для любой центральной проекции этой конфигурации. Отсюда и пошло название новой геометрии — проективная геометрия.
Так, в недрах искусства живописи родилась новая наука — проективная геометрия — еще одно свидетельство тесных уз между наукой и искусством.
Новые идеи оказались чрезвычайно плодотворными и позволили Дезаргу получить ряд первоклассных результатов, в том числе и знаменитую теорему, носящую его имя. Однако идеи Дезарга опередили его время. Его сочинения отпугивали современников сжатостью изложения и многочисленностью новых обозначений. О Дезарге и его методе просто забыли...
Пути науки неисповедимы. Судьбе угодно было распорядиться так, чтобы ровно через 150 лет после смерти Дезарга его идеи возродил его же соотечественник. Однако произошло это не в родной Франции, а в далекой России, в глухом провинциальном городе Саратове...
21. В плену, в Саратове: рождение проективной геометрии
В деревню, к тетке, в глушь, в Саратов!
Там будешь горе горевать...