* (
Теорема Паскаля. Пусть А, В, С, А', В', С' — шесть точек, принадлежащих некоторому коническому сечению. Тогда точки пересечения трех пар накрест лежащих прямых АВ' и А'В, ВС' и В'С, СА' и С'А принадлежат одной прямой. Существует и другая формулировка теоремы Паскаля, в которой ее связь с теоремой Паппа не столь очевидна: три точки пересечения противоположных сторон шестиугольника, вписанного в коническое сечение, лежат на одной прямой (см. с. 294). Еще раз подчеркнем, что теорема Паскаля справедлива для любого конического сечения (окружности, эллипса, параболы и гиперболы). Более того, при надлежащем определении касательной в точке конического сечения теорема Паскаля будет выполняться в том случае, когда не все из шести точек различны.
Теорема Паппа (а) и теорема Паскаля (б)
Наконец, третья теорема — одна из важнейших теорем проективной геометрии — носит имя Дезарга, который вместе с Понселе разделяет славу создания проективной геометрии.
Теорема Дезарга. Пусть ABC и А'В'С — два треугольника (необязательно лежащие в одной плоскости), такие, что прямые АА', ВВ' и СС', соединяющие соответственные вершины треугольников, сходятся в одной точке S. Тогда точки пересечения соответственных сторон этих треугольников АВ и А'В', ВС и В'С', СА и С'А' лежат на одной прямой. Плоский вариант теоремы Дезарга, как и теоремы Паппа и Паскаля, отнюдь не очевиден, тогда как ее пространственный вариант настолько прозрачен, что просто удивительно, как художники Возрождения, так много занимавшиеся теорией перспективы, не "заметили" его.
Плоский (а) и пространственный (б) варианты теоремы Дезарга
В самом деле, пусть треугольник ABC лежит в горизонтальной плоскости Т, треугольник А'В'С' есть его изображение на картинной плоскости К и точка S — центр проектирования. Прямые, соединяющие соответственные вершины этих треугольников,- это "лучи зрения", а ΔА'В'С есть сечение "пирамиды зрения" с основанием ABC и вершиной в точке S. Соответственные стороны АВ и А'В' расположены на грани SAB "пирамиды зрения", т. е. лежат в одной плоскости и пересекаются в некоторой точке L. Но точка L одновременно принадлежит прямым АВ и А'В'. Значит, она одновременно принадлежит плоскости Т и плоскости К, т. е. лежит на линии пересечения этих плоскостей — прямой tt. Аналогично доказываем, что и точка пересечения сторон АС и А'С (точка М) и сторон ВС и В'С (точка N) лежат на той же прямой tt. Следовательно, все три точки L, М, N лежат на одной прямой. Пространственная теорема Дезарга доказана.
Для доказательства плоской теоремы Дезарга достаточно ΔА'В'С', лежащий в картинной плоскости К, спроектировать на плоскость Т из двух центров проекции S и S1 определяющих прямую S1 S'. В результате на плоскости Т мы получим два треугольника: ABC и А'В'С. Поскольку прямые S1A" и SA лежат в одной плоскости, то точки А" и А будут лежать на одной прямой S'A — линии пересечения этой плоскости с плоскостью Т (аналогично для точек В" и B, а также С" и С). Следовательно, прямые, соединяющие соответственные вершины треугольников ABC и А"В"С", пересекаются в одной точке S' т. е. удовлетворяют условию теоремы Дезарга. Для каждой из пар треугольников: ΔА'В'С' и ΔАВС, а также ΔА'В'С' и ΔА"В"С" -справедлива пространственная теорема Дезарга. Более того, так как в каждой паре этих треугольников имеется один й тот же ΔА'В'С', то всякий раз все три соответственные стороны этих треугольников будут пересекаться в одной точке. Так мы получим точки L, М и N, лежащее на прямой tt, т. е. придем к плоской теореме Дезарга.