* (Каким тонким является инструмент скрипка, убеждает простой пример из книги известного венгерского скрипача Карла Флеша "Искусство скрипичной игры": "Пусть на струне ля необходимо сыграть два звука ля и си-бемоль второй октавы. Разница между этими звуками равна 60 Гц. Расстояние на грифе — 2 мм, следовательно, на одно колебание струны приходится 1/30 мм. Предполагая, что ля взято чисто, и желая сыграть математически чисто си-бемоль, мы должны поставить палец в нужное место струны с точностью до 1/30 мм". Насколько же чувствительными должны быть слух и пальцы скрипача, чтобы отмерить расстояние с точностью до 1/30 мм (это 33 микрона)! )

Что касается инструментов с фиксированной высотой звуков, то введение десяти дополнительных звуков на семь основных слишком усложнило бы и сами инструменты, и игру на них. Тем более что и это не решало окончательно проблему и более тонкие построения требовали все новых и новых звуков. На сегодня в теории музыки известна масса строев с числом ступеней от 17 до 84! Но все они так и остались в кабинетах теоретиков. Практика же, руководствуясь мудрым критерием простоты (и красоты), оставила только пять дополнительных звуков: по одному в каждом из целых тонов. Они и стали черными (дополнительными) клавишами фортепиано.

Так в октаве стало 12 звуков. Поскольку каждая пара дополнительных звуков отличалась лишь на пифагорову комму (это легко проверить самостоятельно), то их попросту приравняли между собой (до-диез стал равен ре-бемолю и т. д.).

Такое приравнивание звуков с одинаковой высотой, но разными названиями в теории музыки называется энгармонизмом. Тонкости ладового звучания были принесены в жертву простоте. Инструменты же с числом звуков в октаве, превышающим 12, можно увидеть только в музеях. В московском Музее музыкальной культуры имени М. И. Глинки хранится рояль русского писателя, музыканта и музыковеда В. Ф. Одоевского (1804-1869), в каждой октаве которого имеется не 12, а 17 клавиш, настроенных согласно (8.2).

Квинтовая цепь пифагорова строя дала простой способ настройки инструментов с фиксированной высотой звуков: органов, клавесинов, фортепиано. От основного тона (сегодня по общему признанию им является звук ля первой октавы) откладывались семь октав — скелет музыкальной шкалы. Эти октавы заполнялись 12 звуками, полученными ходами по квинтам вверх и вниз. Какие из звуков взять за дополнительные — повышенные или пониженные,- особого значения не имело. Важно было другое: пифагорова комма оставалась внутри октавы. Ее можно было переместить в любое место октавы, но нельзя было сделать только одного: нельзя было от нее избавиться! И она продолжала портить кровь музыкантам на протяжении столетий. Почему?

Если взять пифагоров строй с пониженными дополнительными звуками:

то в таком строе все квинты будут звучать чисто (иметь интервальный коэффициент 3/2), кроме одной. Квинта си-соль-бемоль будет иметь интервальный коэффициент 1024/729:243/256≈1,4798, а не 1,5! От чистой квинты она, разумеется, отличается на пифагорову комму: 1,5/1,4798≈1,0136. Такая квинта на органе издавала пронзительный, неприятный звук, похожий на завывание волка, за что и была прозвана "волчьей квинтой" или просто "волком". Обращением "волчьей квинты" является "волчья кварта" соль-бемоль-си, которая также отличается от чистой кварты (4/3 = 1,333...) на пифагорову комму:

243/127:1024/729≈1,3515; 1,3515/1,3333≈1,0136. Можно сказать, что вся история развития музыкальных строев была историей борьбы с "волками". Но об этом — чуть позже.

А сейчас обратим внимание на второй существенный недостаток пифагорова строя. Его заметил еще во II веке древнегреческий ученый пифагореец Дидим. Дело в том, что пифагорова терция (81/64) при гармоническом, т. е. одновременном, исполнении обоих тонов, образующих терцию, звучит слишком напряженно. Дидим предложил заменить пифагорову терцию (81/64) так называемой "чистой терцией" (5/4 = 80/64), которая гармонически звучит значительно приятнее, хотя, как видим, лишь чуть-чуть отличается от пифагоровой терции. Разность пифагоровой и чистой терций (81/64:80/64 = 81/80≈1,0125) называется ди-димовой коммой и приблизительно равна 1/10 целого тона.

Перейти на страницу:

Похожие книги