Сейчас трудно сказать, кому первому пришла идея равномерно разделить октаву (а вместе с ней и пифагорову комму) на 12 равных частей. Идея эта была подготовлена самой логикой развития музыкального строя и, как говорят в таких случаях, носилась в воздухе. Но изложение этой идеи мы находим опять-таки в энциклопедическом труде Мерсенна "Универсальная гармония". Здесь Мерсенн дал математическое описание нового строя и рассчитал его интервальные коэффициенты. Суть нового метода заключалась в следующем.

Мы знаем, что и пифагоров, и чистый строй не замкнуты, т. е. звук, полученный в результате 12 ходов по квинтам вверх или вниз, не является точным октавным повторением исходного звука, а отличается от него на пифагорову комму. На протяжении столетий наибольшее, что позволяли себе теоретики музыки,- это перегонять комму по гамме с места на место. Комма нетронутой блуждала по гамме и время от времени заявляла о себе в завывании "волков". Так вот, Мерсенн предложил сузить полутона так, чтобы они точно укладывались в октаву. Тем самым он равномерно распределил пифагорову комму по всем 12 полутонам, и она как бы "растворилась" в гамме: стала незаметной.

Для того чтобы разделить октаву (2) на 12 равных частей, в качестве нового полутона необходимо взять по формуле (6.12) интервал Следовательно, математическое выражение равномерно-темперированного строя будет предельно простым:

(9.1)

Если воспользоваться логарифмическими частотами и логарифмическими интервалами (6.13), т. е. прологарифмировать (9.1) по основанию 2, то математический строй (9.1) примет наиболее простой вид (интервал логарифмической октавы 0≤L≤1 будет арифметически разделен на 12 равных логарифмических полутонов (1/12)):

(9.2)

Проверим, что будет в новом строе с консонансами и прежде всего с квинтой. Темперированная квинта имеет интервальный коэффициент 27/12≈1,4983, который несущественно отличается от интервального коэффициента чистой квинты (3/2):

То же справедливо и для кварты (4/3):

Эти расхождения улавливает лишь изощренный слух профессионала. Несколько хуже обстоят дела с терциями. Сравнивая темперированную большую терцию

24/12 = 1,2599 с пифагоровой терцией (81/64 = 1,2656) и чистой терцией (5/4 = 1,25), имеем 1,2656/1,2599≈1,0044; 1,2599/1,25≈1,008. Как видим, здесь относительные ошибки соответственно в 4 и 8 раз больше, чем для квинты (примерно то же имеем для темперированной малой терции). Но и эти терции в музыкальном отношении вполне приемлемы.

Однако новая система Мерсенна была принята в штыки. Даже приятель Мерсенна по иезуитскому коллежу математик Декарт был возмущен надругательством над чистотой консонансов, а музыкантов, которые рискнут воспользоваться новой темперацией, назвал невеждами, не имеющими никакого представления о законах музыкальной науки. "Что касается Ваших музыкантов,- писал Мерсенну Декарт,- то какими умелыми Вы бы их ни делали, я должен сказать, что они или издеваются, или насмехаются, или никогда ничего не понимали в теории музыки". Чистота звучания и простота целочисленных отношений для консонансов, идущие от родоначальника европейской науки Пифагора, представлялись Декарту нерушимыми. Таким образом, потребовалось еще более полувека, чтобы новая система завоевала себе право на жизнь.

Путь Веркмейстера к равномерной темперации, разумеется, не был усыпан розами. К тому времени и в музыке сформировались два противоборствующих лагеря: теоретики, опиравшиеся в построении музыкальных систем на математику ("разум"), и практики, предпочитавшие полагаться на собственный слух ("ухо"). Любопытно, что среди сторонников "уха" были математики Декарт и Д'Аламбер, а среди сторонников "разума" — композитор Рамо. К счастью, Веркмейстер держался "золотой середины".

Как бы то ни было, но к концу XVII века вышли две его книги, содержавшие практическое изложение равномерной темперации. Первая из них называлась "Музыкальная темперация, или ясное математически правильное изложение того, как при помощи монохорда следует настраивать по хорошей темперации клавиры — органы, позитивы, регали, спинеты, для того чтобы в соответствии с сегодняшней манерой исполнения музыки все тональности звучали в приятной и сносной гармонии. К этому добавлено предваряющее сочинение о преимуществах совершенных и несовершенных музыкальных исчислений, пропорций и консонансов, которые надо учитывать при установлении этой темперации. Наряду с этим приложено гравированное на меди ясное и полное обозначение этой темперации на монохорде. Обнародовано Андреасом Веркмейстером, соборным органистом в Кведлинбурге. 1691 год". Название второй книги мы лучше опустим.

Перейти на страницу:

Похожие книги