Таким образом, седьмая ступень (11.1) b6=
Если прологарифмировать (11.1) — (11.3) по основанию 2, то эти соотношения примут наиболее простой вид
Здесь ak = log2bk (k = 0, l, 2, ..., 12). Равенства (11.4) — (11.6) выражают тот простой факт, что логарифмическая октава [0; 1] разбита на 12 равных частей. Поэтому каждые три соседних члена (11.4) симметричны относительно среднего из них и отстоят от него на расстояние 1/12 (локальная симметрия), а середина логарифмической октавы а6=1/2 является центром ее глобальной симметрии, т. е. для каждого аn слева от а6 существует симметричный относительно а6 член a12-n справа от а6, так что расстояния a12-n — а6 и а6 — аn равны (n = 0, 1, 2, ..., 5).
Из равенств (11.1-3) или (11.4-6) очевидно, что при любых сдвигах (геометрических для (11.1) или арифметических для (11.4) структура равномерно-темперированной гаммы не нарушается, т. е. равномерно-темперированная гамма допускает модуляции в любые тональности. Эти возможности равномерной темперации, как отмечалось в главе 9, блестяще проиллюстрировал И. С. Бах в своем "Хорошо темперированном клавире".
Рассмотрим теперь лидийскую гамму пифагорова строя, или натуральный мажор (8.1), взяв в качестве дополнительных ступеней пониженные звуки (
Структура пифагоровой гаммы (11.7) значительно сложнее. Однако при ближайшем рассмотрении можно обнаружить, что пифагорова гамма состоит из трех геометрических прогрессий, переплетенных между собой, подобно Платонову гептахорду (7.1), причем все три прогрессии имеют одинаковый знаменатель
Для этих прогрессий справедливы соотношения
Учитывая расположение членов прогрессии в (11.7), приходим к выводу, что пифагорова гамма, также обладает глобальной геометрической симметрией. Следовательно,
Но
Легко проверить, что в гамме (11.8) можно взять чистые квинты на всех ступенях, кроме седьмой (
Рассмотрим теперь диатоническую 7-ступенную гамму чистого строя (8.7):
Мы знаем, что гамма чистого строя является наиболее благозвучной, а ее интервальные коэффициенты имеют самый простой вид. Но еще удивительнее то, что гамма (11.9) является и самой пропорциональной. В самом деле, среднее арифметическое и среднее гармоническое основного тона (1) и октавы (2) дают нам квинту и кварту:
Среднее арифметическое и среднее гармоническое основного тона и квинты образуют большую и малую терции:
Наконец, взяв среднее арифметическое и среднее гармоническое основного тона и большой терции, мы получим оба интервала тона чистого строя:
Таким образом, все главные интервалы чистого строя получаются как последовательная цепь средних пропорциональных, началом которой является пропорциональное деление октавы на квинту и кварту.
Перейдем к хроматической гамме чистого строя. Для построения дополнительных ступеней хроматической гаммы отложим полутон чистого строя (16/15) вверх от 1, 2, 4, 5 и 6-й ступеней диатонической гаммы (11.9), т. е. умножим их интервальные коэффициенты на 16/15, а также из соображений симметрии отложим полутон вниз от 5-й ступени. В результате получим 13-ступенную гамму:
Интервальные коэффициенты 45/32 и 64/45 можно заменить на более простые 7/5 и 10/7, которые приближенно им равны