Если окинуть взглядом 2500 лет истории европейской музыки, от Пифагора и до наших дней, то слова П. И. Чайковского, вынесенные в эпиграф, обретают особый смысл. В самом деле, каких только переворотов в мировоззрении, сознании и бытии человечества не произошло за это время! Но основа музыки — музыкальная гамма — остается практически неизменной. Музыкальная гамма даже в наш бурный век представляется незыблемым утесом в клокочущем море новых идей и теорий.
Но в чем причина такого завидного долголетия музыкальной гаммы? Почему из всего обилия звуков с частотой от 16 до 20000 Гц, которые способно воспринимать наше ухо (в области до 4000 Гц мы отличаем звуки, отстоящие друг от друга по
частоте всего на одно колебание в секунду, т. е. почти 4000 звуков!), в музыке используется всего 7 октав по 12 звуков, т. е. всего 84 звука[22]?
Объяснить, почему музыкальный звукоряд содержит именно 7 октав, нетрудно. В самом деле, возьмем самую нижнюю ноту звукоряда —
* (
Легко видеть, что восьмая октава выходит далеко за границу четкой различимости высоких звуков (4000 Гц), и, таким образом, в диапазоне до 4000 Гц укладывается чуть более 7 октав. Выходить же за границу 4000 Гц нет смысла, так как звуки там плохо различаются по высоте и мелодия будет теряться.
Итак, в диапазоне от 16 до 4000 Гц укладывается чуть более 7 октав. Октав-ные звуки воспринимаются как подобные, родственные (это объясняется, как мы уже знаем, совпадением большого числа их гармоник) и служат своего рода масштабными метками в музыкальной шкале. Следовательно, построение музыкальной шкалы сводится к искусному делению октавы на составные части.
Почему октава разделена именно на 12 частей, мы уже объяснили в предыдущей главе. Как показала история развития музыки, только при таком делении октавы достигается та "строгая соразмеренная гармония всех частей, объединяемых тем, чему они принадлежат,- такая, что ни прибавить, ни убавить, ни изменить ничего нельзя, не сделав хуже". Эти слова, как мы знаем (с. 17), являются определением красоты по Альберти. Красота же вечна. Таким образом, именно в пропорциональном гармоничном делении октавы на составные части и заключается источник красоты музыкальной гаммы, а значит, и секрет ее трехтысячелетнего долголетия.
Мы уже отмечали некоторые пропорции музыкальной гаммы. Мы также знаем, что пропорциональность и симметрия являются объективными признаками красоты. Однако чем ближе всматриваешься в музыкальную гамму, тем полнее раскрываются все новые закономерности ее пропорционального строения, а значит, и объективные законы ее красоты. Остановимся подробнее на некоторых из этих закономерностей.
Рассмотрим вначале равномерно-темперированную 12-ступенную хроматическую гамму (9.1), имеющую наиболее простое строение:
Легко видеть, что ступени равномерно-темперированной гаммы (11.1) образуют геометрическую прогрессию со знаменателем
Следовательно, каждая внутренняя ступень гаммы (11.1) является средним геометрическим своих соседей. Назовем это
Кроме того, гамма (11.1) обладает глобальной геометрической симметрией, т. е. произведения членов (11.1), равноудаленных от концов, равны квадрату среднего члена b6:
или